Panorama dos nutlins como protótipo para terapia do câncer

  • Caroline Rego Rodrigues Universidade Estadual de Goiás
  • Luiz Carlos da Cunha
  • Lídia Andreu Guillo
Palavras-chave: nutlins, p53, MDM2, câncer

Resumo

A p53 é uma proteína supressora tumoral que desempenha papel crucial na
defesa da célula contra mutações deletérias e transformações cancerosas. Ela é 
ativada por meio da ação de agentes genotóxicos (irradiação ultravioleta, estresse oxidativo, drogas citotóxicas) ou mesmo não genotóxicos (hipóxia, hipertermia, depleção de ribonucleotídeos). Uma vez ativada, a p53 coordena o sistema de reparo da célula levando-a à parada do ciclo celular, à senescência ou à apoptose. A via de sinalização da proteína p53 encontra-se inativada em todos os tipos de câncer e este fato tem chamado a atenção de muitos pesquisadores no sentido do desenvolvimento de novas terapias farmacológicas baseadas no reestabelecimento dessa via. Os níveis de p53 na célula estão sob o rígido controle do regulador negativo MDM2 via ubiquitinação. A p53 também controla a transcrição do MDM2 gerando uma regulação por feedback em que as duas proteínas mutuamente controlam seus níveis celulares. Dessa forma, foi pensado que o bloqueio da interação p53-MDM2 poderia levar ao efeito farmacológico antitumoral e várias moléculas inibidoras foram testadas para este fim, dentre elas uma família de imidazolinas tetrassubstituídas, chamadas nutlins. Estes compostos podem ativar seletivamente a via de sinalização da p53 in vitro e in vivo em linhagens de tumores humanos que apresentam alta expressão de HDM2 (o tipo humano de MDM2) levando à inibição do crescimento celular e à apoptose. Os inibidores de MDM2 representam uma classe promissora de ativadores da p53 que podem se tornar fármacos efetivos no tratamento do câncer e também no diagnóstico por imagem.

Referências

ALCORTA, D. A.; XIONG, Y.; PHELPS, D.; HANNON, G.; BEACH, D.; BARRETT,J. C. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proceedings of the National Academy of Sciences, v. 93, p. 13742–13747, 1996.

BARONE, G.; TWEDDLE, D. A.; SHOHET, J. M.; CHESLER, L.; MORENO, L.; PEARSON, A. D. J.; VAN MAERKEN, T. MDM2-p53 Interaction in Paediatric Solid Tumours: Preclinical Rationale, Biomarkers and Resistance. Current Drug Targets,v. 15, p. 114-123, 2014.

BÖTTGER, A.; BÖTTGER, V.; SPARKS, A.; LIU, W. L.; HOWARD, S. F.; LANE, D. P. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Current Biology, v. 07, n. 01, p. 860–869, 1997.

CAMPISI, J. Cellular senescence as a tumor-suppressor mechanism. Trends in Cell Biology, v. 11, p. S27–S31, 2001.

CHEN, F.; WANGA, W.; EL-DEIRY, W. S. Current strategies to target p53 in câncer. Biochemical Pharmacology, v. 80, p. 724–730, 2010.

CHENE, P.; FUCHS, I.; CARENA, P.; GARCIA-ECHEVERRIA, F.; GARCIA-

ECHEVERRIA, C. A small synthetic peptide, which inhibits the p53–hdm2

interaction, stimulates the p53 pathway in tumour cell lines. Journal of Molecular Biology, v. 299, p. 245–253, 2000.

DORNAN, D.; WERTZ, I.; SHIMIZU, H.; ARNOTT, D.; FRANTZ, G. D.; DOWD, P.; O'ROURKE, K.; KOEPPEN, H.; DIXIT, V. M. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature, v. 429, p. 86–92, 2004.

DOTTO, G. P. p21(WAF1/Cip1): more than a break to the cell cycle? Biochimica et Biophysica Acta, v. 1471, p. M43–M56, 2000.

DUNCAN, S. J; GRUESCHOW, S.; WILLIAMS, D. H.; MCNICHOLAS, C.;

PUREWAL, R.; HAJEK, M; GERLITZ, M.; MARTIN, S.; WRIGLEY, S. K.; MOORE, M. Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. Journal of the American Chemical Society, v. 123, p. 554–560, 2001.

EL-DEIRY W. S. The role of p53 in chemosensitivity and radiosensitivity. Oncogene, v. 22, p. 7486–95, 2003.

ELMORE, S. Apoptosis: A Review of Programmed Cell Death. Toxicologic

Pathology, v. 35, n. 04, p. 495–516, 2007.

FISCHER, P. M.; LANE, D. P. Small-molecule inhibitors of the p53 suppressor HDM2: have protein–protein interactions come of age as drug targets? Trends in Pharmacological Sciences, v. 25, n. 07, p. 343-346, 2004.

FREEDMAN, D. A.; WU, L.; LEVINE, A. J. Functions of the MDM2 oncoprotein. Cellular and Molecular Life Sciences, v. 55, p. 96–107, 1999.

FRITSCHE, M.; HAESSLER, C.; BRANDNER, G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNAdamaging agents. Oncogene, v. 8, p. 307–318, 1993.

GALATIN, P. S.; ABRAHAM, D. J. QSAR: hydropathic analysis of inhibitors of the p53–MDM2 interaction. Proteins, v. 45, p. 169–175, 2001.

GHASSEMIFAR, S.; MENDRYSA, S. M. MDM2 antagonism by nutlin-3 induces death in human medulloblastoma cells. Neuroscience Letters, v. 513, p. 106– 110, 2012.

GARCIA-ECHEVERRIA, C.; CHENE, P.; BLOMMERS, M. J.; FURET, P. Discovery of potent antagonists of the interaction between human doubleminute 2 and tumor suppressor p53. Journal of Medicinal Chemistry, v. 43, p. 3205–3208, 2000.

GASPARINI, C.; CELEGHINI, C.; MONASTA, L.; ZAULI, G. NF‐κB pathways in hematological malignancies. Cellular and Molecular Life Sciences, v. 71, p. 2083–2102, 2014.

GASPARINI C.; TOMMASINI, A. The MDM2 inhibitor Nutlin-3 modulates dendritic cell–induced T cell proliferation. Human Immunology, v. 73, p. 342-345, 2012.

GHOSH, P.; ZHANG, J.; SHI, Z. Z.; LI, K. Synthesis and evaluation of an imidazole derivative–fluorescein conjugate. Bioorganic & Medicinal Chemistry, v. 21, p. 2418–2425, 2013.

HAINAUT, P. P.; HOLLSTEIN, M. p53 and human cancer: the first ten thousand mutations. Advances in Cancer Research, v. 77, p. 81–137, 2000.

HOCK, A. K.; VOUSDEN, K. H. The role of ubiquitin modification in the regulation of p53. Biochimica et Biophysica Acta, v. 1843, p. 137-149, 2014.

HORI, T.; KONDO, T.; KANAMORI, M.; TABUCHI, Y.; OGAWA, R.; ZHAO, Q. L.; AHMED, K.; YASUDA, T.; SEKI, S.; SUZUKI, K.; KIMURA, T. Nutlin-3 enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through up-regulation of death receptor 5 (DR5) in human sarcoma HOS cells and human colon cancer HCT116 cells. Cancer Letters, v. 287, p. 98–108, 2010.

JANOUSKOVA H.; RAY, A. N.; NOULET, F.; LELONG-REBEL, I.; CHOULIER, L.; SCHAFFNER, F.; LEHMANN, M.; MARTIN, S.; TEISINGER, J.; DONTENWILL, M. Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target a5 integrin in colon cancer cells. Cancer Letters, v. 336, p. 307–318, 2013.

KASTAN, M. B.; ONYEKWERE, O.; SIDRANSKY, D.; VOGELSTEIN, B.; CRAIG, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Research, v. 51, p. 6304– 6311, 1991.

LANE, D. P. p53, guardian of the genome. Nature, v. 358, p. 15-16, 1992.

LENG, R. P.; LIN, Y.; MA, W.; WU, H.; LEMMERS, B.; CHUNG, S.; PARANT, J. M.; LOZANO, G.; HAKEM, R.; BENCHIMOL, S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell, v. 112, p. 779–791, 2003.

LUO, H.; YOUNTB, C.; LANGA, H.; YANGA, A.; RIEMERA, E. C.; LYONSB, K.; VANEKB, K. N.; SILVESTRIC, G. A.; SCHULTEA, B. A.; WANGA, G. Y. Activation of p53 with Nutlin-3a radiosensitizes lung cancer cells via enhancingradiation-induced premature senescence. Lung Cancer, v. 81, p. 167– 173, 2013.

MAGNELLI, L.; CINELLI, M.; CHIARUGI, V. Phorbol esters attenuate the expression of p53 in cells treated with doxorubicin and protect TS-P53/K562 from apoptosis. Biochemical and Biophysical Research Communications, v. 215, p. 641–645, 1995.

MALTZMAN, W.; CZYZYK, L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Molecular and Cellular Biology, v. 4, p. 1689–1694, 1984.

MEPLAN, C.; MANN, K.; HAINAUT, P. Cadmium induces conformational

modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. The Journal of Biological Chemistry, v. 274, p. 31663–31670, 1999.

MESSMER, U. K.; BRUNE, B. Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO-donor exposure, NAD 1 content, and p53 accumulation. Archives of Biochemistry and Biophysics, v. 327, p. 1–10, 1996.

MICHAEL, D.; OREN, M. The p53–Mdm2 module and the ubiquitin system.

Seminars in Cancer Biology, v. 13, p. 49–58, 2003.

MOLL, U. M.; WOLFF, S.; SPEIDEL, D.; DEPPERT, W. Transcription-independent pro-apoptotic functions of p53. Curr.Opin. Cell Biology. v. 17, p. 631–636, 2005.

Momand, J.; Jung, D.; Wilczynski, S.; Niland, J. The MDM2 gene amplification database. Nucleic Acids Research, v. 26 p. 3453–3459, 1998.

NELSON, W. G.; KASTAN, M. B. DNA strand breaks: the DNA template alterations that trigger p53- dependent DNA damage response pathways. Molecular

and Cellular Biology, v. 14, p. 1815–1823, 1994.

OREN, M. Regulation of the p53 tumor suppressor protein. The Journal of

Biological Chemistry, v. 274, p. 36031–36034, 1999.

PASSMORE, L. A.; BARFORD, D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochemical Journal, v. 379, p. 513–525, 2004.

PLUQUET, O.; HAINAUT, P. Genotoxic and non-genotoxic pathways of p53

induction. Cancer Letters, v. 174, p. 1–15, 2001.

RAMET, M.; CASTREN, K.; JARVINEN, K.; PEKKALA, K.; TURPEENNIEMI-

HUJANEN, T.; SOINI, Y.; PAAKKO, P.; VAHAKANGAS, K. p53 protein expression is correlated with benzo[a]pyrene-DNA adducts in carcinoma cell lines. Carcinogenesis, v. 16, p. 2117–2124, 1995.

RAO, B.; LAIN, S.; THOMPSON, A. M. p53-Based cyclotherapy: exploiting

the ‘guardian of the genome’ to protect normal cells from cytotoxic therapy. British Journal of Cancer, v. 109, p. 2954–2958, 2013.

RONINSON, I. B. Tumor Cell Senescence in Cancer Treatment. Cancer Research, v. 63, p. 2705–2715, 2003.

SAHA, M. N.; Qiu, L.; Chang, H. Targeting p53 by small molecules in hematological malignancies. Journal of Hematology & Oncology, v. 6, n. 23, p. 1-9, 2013.

SHIN, J. S.; HA, J. H.; HE, F.; MUTO, Y.; RYU, K. S.; YOON, H. S.; KANG, S.; PARK, S. G.; PARK, B. C.; CHOI, S. U.; CHI, S. W. Structural insights into the dual-targeting mechanism of Nutlin-3. Biochemical and Biophysical Research Communications, v. 420, p. 48–53, 2012.

MA, T.; YAMADA, S.; ICHWAN, S. J. A.; ISEKI, S.; OHTANI, K.; OTSU, M.; IKEDA, M. A. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation. Biochemical and Biophysical Research Communications, v. 417, p. 931–937, 2012.

TEOH, P. J.; CHNG, W. J. p53 Abnormalities and Potential Therapeutic Targeting in Multiple Myeloma. BioMed Research International, v. 2014, p. 1-9, 2014.

TISHLER, R. B.; CALDERWOOD, S. K.; COLEMAN, C. N.; PRICE, B. D. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Research, v. 53, p. 2212–2216, 1993.

TOLEDO, F.; WAHL, G. M. MDM2 and MDM4: p53 regulators as targets in

anticancer therapy. The International Journal of Biochemistry & Cell Biology, v. 39 1476–1482, 2007.

VAN MAERKEN, T.; RIHANI, A.; VAN GOETHEM, A.; DE PAEPE, A.; SPELEMAN, F.; VANDESOMPELE, J. Pharmacologic activation of wild-type p53 by nutlin therapy in childhood câncer. Cancer Letters, v. 344, p. 157–165, 2014.

VASSILEV, L. T. p53 Activation by Small Molecules: Application in Oncology. Journal of Medicinal Chemistry, v. 48, n. 14, 2005.

VASSILEV, L.T.; VU, B.T.; GRAVES, B.; CARVAJAL, D.; PODLASKI, F.;

FILIPOVIC, Z.; et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, v. 303, p. 844–8, 2004.

VENTURA, A.; KIRSCH, D.G.; MCLAUGHLIN, M.E.; TUVESON D.A.; GRIMM, J.; LINTAULT, L.; et al. Restoration of p53 function leads to tumour regression in vivo. Nature, v. 445, p. 661–5, 2007.

VOUSDEN, K.H.; LU, X. Live or let die: the cell’s response to p53. Nature Reviews Cancer v. 2, p. 594–604, 2002.

VOUSDEN, K.H.; PRIVES, C. Blinded by the light: the growing complexity of p53. Cell, v. 137, p. 413–431, 2009.

YAMAIZUMI, M.; SUGANO, T. Uv.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene, v. 9, p. 2775–2784, 1994.

Publicado
2014-12-05
Seção
Ciências da Saúde