# PREDICTION FACTORS OF FEAR OF FALLING IN OLDER ADULTS ASSESSED BY THE ICF DOMAINS: GENDER, SOCIAL PARTICIPATION, AND WALKING SPEED

FATORES DE PREDIÇÃO DO MEDO DE CAIR EM ADULTOS MAIS VELHOS AVALIADOS PELOS DOMÍNIOS DA CIF: GÊNERO, PARTICIPAÇÃO SOCIAL E VELOCIDADE DA MARCHA

FACTORES DE PREDICCIÓN DEL MIEDO A CAERSE EN ADULTOS MAYORES EVALUADOS POR LOS DOMINIOS DE LA CIF: GÉNERO, PARTICIPACIÓN SOCIAL Y VELOCIDAD DE LA MARCHA

#### **RESUMO**

Objetivo: A Classificação Internacional de Funcionalidade, Incapacidade e Saúde (CIF) pode ser um modelo abrangente ideal para avaliação do risco de quedas. Há uma escassez de informações que relacionem a CIF com a avaliação do medo de cair em idosos que vivem na comunidade. O objetivo do presente estudo foi investigar os fatores associados que predizem o medo de cair em idosos, classificados segundo a CIF. Materiais e Métodos: Foram coletados dados de 340 adultos com 65 anos ou mais. O medo de cair foi avaliado por autorrelato. Os participantes foram avaliados quanto aos seus aspectos pessoais, estado de saúde, habilidades funcionais e perfil de participação social. Utilizou-se análise de regressão logística multivariada para determinar modelos preditivos do medo de cair. Resultados: A associação entre gênero (OR 2,77; IC 95% 1,62-4,72, p<0,001), velocidade da marcha (OR 0,19; IC 95% 0,09-0,42, p<0,001) e perfil de participação social (OR 2,35; IC 95% 1,39-3,95, p<0,001) compôs um modelo capaz de predizer até 64% (AUC = 0,794, p<0,001) do medo de cair em idosos. Conclusão: A associação dos preditores do medo de cair identifica que mulheres apresentam mais restrições na participação social e redução da velocidade da marcha, fatores que contribuem para o aumento do medo de cair em idosos.

**Palavras-chave:** Acidentes por Quedas; Envelhecimento; Percepção; Medo; Transtornos fóbicos

#### **ABSTRACT**

Objective: The International Classification of Function, Disability, and Health (ICF) may be an ideal comprehensive model for fall risk assessment. However, information associating ICF and fear of falling among community-dwelling older adults remains unclear. This study aimed to investigate the associated factors that predict the fear of falling in the older adults classified by the ICF. Materials and Methods: Data were collected from 340 community-dwelling older adults aged 65 years and older. They were assessed for their personal aspects, health status, functional skills, and social participation profile; the fear of falling was selfreported. Multivariate logistic regression analysis was used to determine prediction models for fear of falling. Results: Gender (OR 2.77; 95%CI 1.62 - 4.72, p &It; 0.001), walking speed (OR 0.19; 95%CI 0.09 - 042, p<0,001), and social participation (OR 2.35; 95%Cl 1.39 - 3.95, p p<0,001), composed a model that may predict up to 64% (AUC = 0.794, p<0,001) of the fear of falling among community-dwelling older adults. Conclusion: The association of the predictors of fear of falling identified that women have more restriction on social participation and reduced walking speed as factors that contribute to increased fear of falling in community-dwelling older adults.

**Keywords**: Accidental Falls; Aging; Perception; Fear; Phobic Disorders.

#### **RESUMEM**

**Objetivo**: La Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud (CIF) puede ser un modelo integral ideal para la evaluación del riesgo de caídas. Existe una falta de información que relacione la CIF con la evaluación del miedo a caer en adultos mayores que viven en la comunidad. El objetivo del presente estudio fue investigar los factores asociados que predicen el miedo a caer en adultos mayores, clasificados según la CIF. **Materiales y Métodos**: Se recopilaron datos de 340 adultos de 65 años o más. El miedo a caer fue evaluado por autoinforme. Los participantes

Guilherme Augusto Santos Bueno<sup>1,2,3</sup>



Ruth Losada de Menezes<sup>1,4</sup>



- Postgraduate Program in Health Sciences and Technologies, University of Brasília, Federal District, DF, Brazil.
- Department of Medicine, University of Rio Verde, Goiás, GO, Brazil.
- Department of Medicine, Euro-American University Center - UNIEURO, Federal District, DF, Brazil.
- Postgraduate Program in Health Sciences, Federal University of Goiás, Goiânia, Brazil
- LabinSaúde, Coimbra Health School Polytechnic of Coimbra, (ESTeSC-IPC), Coimbra, Portugal

E-mail: guilhermeaugusto@unirv.edu.br

Recebido em: 30/04/2025 Revisado em: 01/09/2025 Aceito em: 03/10/2025



fueron evaluados en cuanto a sus aspectos personales, estado de salud, habilidades funcionales y perfil de participación social. Se utilizó un análisis de regresión logística multivariada para determinar modelos predictivos del miedo a caer. **Resultados:** La asociación entre género (OR 2,77; IC 95% 1,62–4,72, p<0,001), velocidad de la marcha (OR 0,19; IC 95% 0,09–0,42, p<0,001) y perfil de participación social (OR 2,35; IC 95% 1,39–3,95, p<0,001) conformó un modelo capaz de predecir hasta el 64% (AUC = 0,794, p<0,001) del miedo a caer en adultos mayores. **Conclusión**: La asociación de los predictores del miedo a caer indica que las mujeres presentan mayores restricciones en la participación social y una reducción en la velocidad de la marcha, factores que contribuyen al aumento del miedo a caer em adultos mayores.

Palabras clave: Accidentes por Caídas; Envejecimiento; Percepción; Miedo; Trastornos fóbicos.

#### **INTRODUCTION**

Falls and fall-related injuries are major health problems among older adults<sup>1</sup>. About a third of community-dwelling persons aged 65 years or older fall every year<sup>2</sup>. Falls can lead to minor injuries such as bruises, lacerations, or abrasions, and 10% of the cases result in fractures<sup>3</sup>, thus contributing to significant increases in morbidity and mortality 1. Direct health care costs associated with this phenomenon are high<sup>4</sup>, reaching 25 billion euros per year in the European Union only<sup>5</sup>.

Falls are complex and have multifactorial etiologies<sup>6</sup>. Different factors can increase the risk of falling, particularly psychotropic medications and polypharmacy, and mitigation of these factors was found to reduce fall rates<sup>7</sup>. Environmental hazards at home related to lighting, chair and bed height, floor surfaces, and other factors create opportunities for falls and have been included as essential components of fall prevention programs<sup>8</sup>. Additionally, changes in musculoskeletal and sensory system functions that are associated with aging lead to deficits in maintaining postural stability<sup>2</sup>. Therefore, fear of falling (FoF) can have a major impact on older adults, raising caution and restricting activities that in turn leads to physical fragility9.

The FoF is a multidimensional phenomenon, influenced by physical, psychological, social and functional factors <sup>10</sup>. Several characteristics are related to fear: being

female<sup>11,12</sup>, older<sup>13</sup>, having poor perception of own's health<sup>14</sup>, higher dependence in the activities of daily living<sup>15,16</sup>, reduced muscle strength<sup>15,17</sup>, impaired balance<sup>11,12</sup>, and previous history of falls<sup>16</sup>.

In this context, the International Classification of Functioning, Disability and Health (ICF), proposed by the World Health Organization, provides a comprehensive biopsychosocial framework to understand the complexity of FoF and falls<sup>18</sup>. The ICF considers functioning and disability as multidimensionais phenomena, including body structures and functions, activities, participation, and contextual factors (environmental and personal)<sup>19</sup>. When applied to fall-related research, the ICF enables the identification of how physical impairments (e.g., balance and muscle strength), activity limitations (e.g., mobility restrictions), participation restrictions (e.g., social withdrawal), and environmental barriers (e.g., unsafe housing conditions) interact to influence fall risk and FoF<sup>20,21</sup>.

Moreover, the ICF framework highlights that FoF is not only a psychological condition but also a determinant of functional decline, since it may restrict activities of daily living, exacerbate dependency, and accelerate frailty<sup>21</sup>. Incorporating the ICF perspective strengthens the understanding that falls and FoF are not isolated clinical events, but health conditions influenced by the interaction of biological,

social, and environmental determinants. This perspective is essential to guide therapeutic strategies and public health interventions aimed at prevention and rehabilitation<sup>18,19</sup>.

The fear of falling (FOF) is reported as one of the main predictors of falls<sup>22-25</sup>. It is as important as impaired balance<sup>26</sup> or, even more important than having had previous falls, since it is expressed even by older adults who have never fell<sup>1,27</sup>. Kabeshova and colleagues<sup>28</sup> did a study with 1,760 participants, divided into elderly with an isolated fall and those with recurrent falls. They analysed, in addition to physical factors, health conditions, personal and social factors, in order to identify, among them, which are the main risk factors for falls. These authors noted that in both study groups the fear of falling was the main predictor and it was strongly associated with falling events<sup>28</sup>. Twenty years before, Lachman and colleagues<sup>29</sup> had suggested the important role of fear of falling on suffering falls.

Previous studies have indicated some factors that predict the fear of falling<sup>12</sup>. These include demographic characteristics, health status and functional abilities<sup>14</sup>. However, there is still no consensus on which associated factors can be addressed to reduce the incidence of falling due to fear of falling. Therefore, this study aims to identify which risk factors favor the prediction of fear of falling in the elderly, bringing elements to elaborate a therapeutic strategy to reduce fear of falling in older adults and ultimately reduce the actual fallings.

# **MATERIALS AND METHODS**

# Study Design

This study is a cross-sectional study, following a convenience sampling method. Ethical approval was obtained from the Research Ethics Committee of Polytechnic Institute of Coimbra (N°6/2017). All participants will give written informed consent before data collection begins as per the Declaration of Helsinki.

## Setting and individuals

Individuals were voluntarily recruited from several settings within the community in different regions of continental Portugal, such as parish councils, physical therapy clinics, seniors' universities, and other facilities.

The study included adults aged 65 years or over, able to stand and walk independently with or without walking aids, and who volunteered to participate in the study; body mass index (BMI) < 30 kg/m2<sup>30</sup>; preserved cognition (Mini-Mental State Examination >24)<sup>31</sup> and >14 points considering the participants the educational level, with illiterate participants<sup>32</sup>.

Individuals who presented severe sensory impairment (deafness or blindness) or cognitive impairment, or impaired ability to understand the questionnaires and functional tests included in the screening protocol were excluded.

Initially, 370 older adults were recruited. Of these, 30 were excluded for not meeting the eligibility criteria: 12 due to BMI ≥30 kg/m², 9 for cognitive impairment (MMSE <24 adjusted for education), and 9 for severe sensory deficits (hearing or visual impairments that prevented test performance). Therefore, the final sample comprised 340 participants, who fulfilled all

inclusion criteria and were included in the analyses.

#### **Procedure**

The evaluation protocol occurred according to the FallSensing screening tool 33.
Fear of Falling

FoF is defined as "a lasting concern about falling that leads to an individual avoiding activities that he or she remains capable of performing"<sup>34</sup>. Considering the negative influence of FoF, we used by self-report through the question "Are you afraid of falling? Yes-No." History of Falls

A fall can be defined as "an unexpected event, in which the participant comes to rest on the ground, floor, or lower level" and "excludes coming to rest against furniture, wall, or other structure"35. HoF within the previous 12 months was be determined by self-report, answering the question "Did you fall in the past 12 months? Yes-No."

Living Settings

Because FoF is more frequent among older adults living alone<sup>36</sup>, this protocol intends to assess the living settings through the question "Do you live alone? Yes-No."

Sedentary Behavior

To understand the community-dwelling adults' sedentary behaviors using a self-reported question, we adopted the estimate measure of sedentariness calculated by Heseltine et al (2015), which is as follows: "Do you spend over 4 hours seated, 5 days or more per week?" This measure resulted from the analyses of sedentary behavior of a sample of 1104 adults aged 65 or more years, who answered the Physical Activity Scale for the Elderl<sup>37</sup>.

Polypharmacy

The number of medicines taken by each person was assessed by self-report through the question "Do you take 4 or more different medicines per day? Yes-No." The names of the medicines were also registered, and they were identified according to their pharmaceutical group (benzodiazepines, antidepressants, antipsychotics, antiinflammatory drugs, antihypertensive drugs, and others drugs).

## **Functional Tests**

Grip Strength

A Jamar (NC 701/142 model), hydraulic hand dynamometer was be settled at the second handle position held with the dominant hand and during the performance of the test, it was be presented vertically in line with the forearm. The test is performed only once and the participant was encouraged to exert his or her maximal grip strength for 5 seconds. The final score was measured in kilograms force (kgf)<sup>38</sup>.

Timed Up and Go

The TUG test is used to assess dynamic balance during gait and transfers tasks, mobility, and lower body strength<sup>39</sup>. To perform this test, the person, wearing his or her regular footwear, was instructed to sit on a standard chair (chair height between 44 and 47 cm) with his or her back against the chair back. The person then stands up and walks straight for 3 meters as fast as possible, turns around, walks back, and sits down. The person must stand up without help (cannot use the upper extremities for support); however, if a walking aid is needed, it should be placed next to the chair and can be used to perform the gait component of the test. The test is performed only one time, the timing begins at

the instruction "go" and stops when the patient sits on the chair<sup>39</sup>.

#### 30 seconds Sit to Stand

The 30s STS test is a simple and effective instrument for assessing lower body strength and identifying muscle weakness in community-dwelling older adults and is one of the most important clinical functional evaluation tests 40. The person was instructed to perform cycles of sit and stand up from a chair as many times as possible over 30 seconds<sup>40</sup>.

The person starts the test seated in the middle of the chair (chair height between 40 and 43.3 cm), feet approximately shoulder-width apart and placed on the floor, and arms crossed by the wrists placed against the chest. The vocal instruction "go" indicates the test's beginning and if the participant completes more than halfway up at the end of 30 seconds, it is counted as a full stand. The final score involves recording the number of stands a person can complete in 30 seconds<sup>40</sup>.

#### Step Test

The step test was designed to assess dynamic standing balance and reproduce lower extremity motor control and coordination. To perform the test, the person was asked to step on and off a block (7.5 cm height, 55 cm width, and 35 cm depth) placed against a wall as many times as possible for 15 seconds. The person should step onto the block with the whole foot and then return fully to the ground. The total number of completed steps in 15 seconds is recorded<sup>41</sup>.

#### 4-Stage Balance Test "Modified"

The 4-Stage Balance test "modified" evaluates balance. To complete this test, the person needs to progressively accomplish the

following 4 different feet positions: side by side stance, semitandem stance (preferred foot forward with the instep of one foot touching the big toe of the other foot), tandem stance (one foot in front of the other, heel touching toe), and one legged stance (preferred leg for support)<sup>42</sup>.

The person was instructed to stand quietly on the pressure platform, arms along the body, with neither shoes nor assistive devices. The positions must be held for 10 seconds each without moving the feet, needing support, losing balance or touching the leg of support with the other leg and must be performed with eyes open and then closed (excluding one legged stance position). The sequence was be side by side stance eyes open, side by side stance eyes closed, semitandem stance eyes open, semitandem stance eyes closed, tandem stance eyes open, tandem stance eyes closed, and one leg stand eyes open. If the person fails to accomplish one of the test positions, the test finishes. The final score will be the number of positions that are completed<sup>42</sup>.

## 10-Meter Walking Speed

The performance of this test requires a 20-meter straight path with 5 meters for acceleration, 10 m for steady-state walking, and 5 meters for deceleration. Markers are placed at the 0-, 5-, 15-, and 20-meter positions of the path, and the time to walk along the 5 and 15 meters is registered. The person was instructed to walk at his or her fastest walking speed wearing typical footwear and without running along the 20-meter path; an assistive device can be used if needed<sup>43</sup>.

#### **Questionnaires**

Self-Efficacy for Exercise

Self-efficacy reflects the confidence that a person has to perform a certain behavior<sup>33</sup>. The self-efficacy for exercise is a 5-item scale intended to analyze the confidence that a person has to perform exercise according to 5 different emotional states, such as feeling worried or having problems, feeling depressed, feeling tired, feeling tense, and being busy. Ratings were made using a 5-point Likert scale from 1 "not at all true" to 4 "completely true." In between are 2, meaning "slightly true," and 3, meaning "moderately true"<sup>33</sup>.

Activities and Participation Profile Related to Mobility

PAPM is an 18-item scale intended to improve the understanding of the difficulties individual experiences while performing certain daily activities in their natural environment. These activities can be conditioned by mobility and are related to the interactions and social relations, education, employment, money management, and social and community life and influence a person's active participation in society. Ratings were made using a 5-point Likert scale from 0, meaning "no limitation or restriction," to 4, meaning "complete limitation or restriction." In between, 1 indicates "mild limitation or restriction," 2 indicates "moderate limitation or restriction," and 3 indicates "severe limitation or restriction." Because some activities may not apply, not all activities may be rated. As a result, an individual's participation profile was to be produced<sup>44</sup>.

Home Safety Checklist for Fall Prevention

The Home Safety Checklist for Fall Prevention is a 38-item scale intended to identify home hazards in each room of a person's home, namely the hallways, stairs, living or dining room, kitchen, bathroom, bedroom, and outdoors. Ratings are assigned using a 3-point scale from 0 (indicating "no risk"), 1 (indicating "risk"), to 99 (indicating "do not apply"). A risk score is produced both to each room and for the home in general<sup>44</sup>.

#### Statistical analysis

Statistical analysis was performed with SPSS Statistics version 23.0 (IBM, Chicago, USA). To assess the normal distribution the Shapiro-Wilk test was used. Differences in the FOF by individual characteristics were identified using the chi-square test, t-test or Mann-Whitney test. Factors statistically significantly associated with fall in the univariate analysis were included in multivariable regression model. The stepwise selection method for logistic regression model was used to identify the FOF risk factors. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for logistic regression. The level of statistical significance was set at less than 0.05.

#### **RESULTS**

This study included 340 individuals. Table 1 shows the association between fear of falling in older adults and demographics, health status, fall risk functional abilities.

Table 1. Association between fear of falling in older adults and demographics, health status, environmental fall risk and functional abilities.

|                                    | Total (n=340)<br>Mean (SD)<br>or | FOF<br>(n=179)<br>Mean (SD) | Non-FOF<br>(n=161)<br>Mean | OR (95% CI)        | p value |
|------------------------------------|----------------------------------|-----------------------------|----------------------------|--------------------|---------|
|                                    | n (%)                            | or<br>n (%)                 | (SD) or<br>n (%)           |                    |         |
| Age (years)                        | 74.93 (6.7)                      | 75.95 (7.1)                 | 73.80<br>(5.9)             | 1.05 (1.02 – 1.09) | 0.003   |
| Gender                             |                                  |                             |                            |                    | <0.001  |
| Female                             | 222 (65.3)                       | 143 (42.1)                  | 79 (23.2)                  | 4.12 (2.55 – 6.54) |         |
| Male                               | 118 (34.7)                       | 36 (10.6)                   | 82 (24.1)                  | 1                  |         |
| Living Settings<br>(alone)         |                                  |                             |                            |                    | 0.046   |
| Yes                                | 120 (35.3)                       | 72 (21.2)                   | 48 (14.1)                  | 1.58 (1.01 – 2.49) |         |
| No                                 | 220 (64.7)                       | 107 (31.5)                  | 113<br>(33.2)              | 1                  |         |
| BMI (kg/m²)                        | 27.91 (4.3)                      | 28.26 (4.7)                 | 27.53<br>(3.7)             | 1.04 (0.99 – 1.090 | 0.116   |
| Physical Activity                  |                                  |                             | . ,                        |                    | 0.020   |
| Active                             | 178 (52.4)                       | 83 (24.4)                   | 95<br>(27.94)              | 1                  |         |
| Sedentary                          | 162 (47.6)                       | 96 (28.2)                   | 66<br>(19.41)              | 1.66 (1.08 – 2.56) |         |
| Self-Efficacy for<br>Exercise      | 14.07 (4.6)                      | 13.11 (4.7)                 | 15.11<br>(4.2)             | 0.91 (0.86 – 0.95) | <0.001  |
| Polypharmacy                       |                                  |                             |                            |                    | <0.001  |
| Yes                                | 230 (67.7)                       | 138 (40.6)                  | 92 (27.1)                  | 2.52 (1.58 – 4.03) |         |
| No                                 | 110 (32.4)                       | 41 (12.1)                   | 69 (20.3)                  | 1                  | 0.010   |
| History of Fall<br>Yes             | 116 (34.1)                       | 72 (21.2)                   | 44 (12.9)                  | 1.80 (1.13 – 2.82) | 0.012   |
| No                                 | 224 (65.9)                       | 107 (31.5)                  | 117 (34.4)                 | 1.00 (1.10 2.02)   |         |
| Environmental risk index (score)   | 22.73 (10.3)                     | 23.87 (10.7)                | 21.46                      | 1.02 (1.00 – 1.05) | 0.031   |
| PAPM (score)                       | 0.52 (0.8)                       | 0.80 (0.5)                  | 0.21 (0.3)                 | 4.50 (2.73 – 7.41) | <0.001  |
| Grip Strength (kg/F)               | 22.36 (8.3)                      | 19.51 (6.3)                 | 25.52<br>(9.2)             | 0.90 (0.88 – 0.93) | <0.001  |
| 30 seconds Sit to<br>Stand (score) | 10.26 (3.7)                      | 9.08 (3.5)                  | 11.44<br>(3.5)             | 0.82 (0.77 – 0.88) | <0.001  |
| Timed UpGo (s)                     | 11.17 (8.2)                      | 13.51 (10.2)                | 8.72 (4.6)                 | 1.15 (1.08 – 1.22) | <0.001  |
| 4-Stage Balance<br>Test (score)    | 5.00 (0.07)                      | 5.00 (1.4)                  | 5.00 (1.2)                 | 0.94 (0.91 – 1.12) | 0.056   |
| Step Test (score)                  | 10.35 (4.2)                      | 8.86 (3.7)                  | 11.90<br>(4.0)             | 0.82 (0.77 – 0.87) | <0.001  |
| 10-Meter Walking<br>Speed (m/s)    | 1.35 (0.5)                       | 1.16 (0.4)                  | 1.57 (0.4)                 | 0.08 (0.04 – 0.16) | <0.001  |

Note: SD, standard deviation; n, sample; kg, kilogram; m, meters; BMI, Body Mass Index; kg/m2, kilogram/square meters; m/s, meters/seconds; PAPM, Activities and Participation Profile Related to Mobility. a Student's T-Test; b Mann-Whitney; c Chi-squared.

The multivariate analysis revealed gender, walking speed, social participation profile as predictors for the FOF level (table 2).

Table 2. Gender, walking speed, activities and participation profile as predictors of the level of fear of falling in older adults.

| Variables                     | β value | р       | OR (Beta     | 95% Confidence |
|-------------------------------|---------|---------|--------------|----------------|
| <u>valiables</u>              |         | value   | coefficient) | Limits         |
| Gender (Female)               | 1.018   | < 0.001 | 2.77         | 1.62 – 4.72    |
| PAPM (higher score)           | 0.853   | 0.001   | 2.35         | 1.39 – 3.95    |
| 10-Meter Walking Speed (m/s); | -1.614  | < 0.001 | 0.19         | 0.09 - 0.42    |
| Constant                      | 1.281   | 0.040   | 3.59         |                |

Note: Nagellerke R square- 0.64. Cox and Snell R-0.47. PAPM - Activities and Participation Profile Related to Mobility; g(x) = (1.018\* gender) + (0.853\* PAPM) + (-1.614\* MWS) + 1.281 =; 1 / [1+e-g(x)] = FOF percentage.

The predictive performance of the constructed model presented AUC = 0.794 (p <0.001). This model predicted FOF with a sensitivity of 75.16%, specificity of 70.16%, positive and negative predictive values of 89.18% and 88.54%, respectively. The cut-off value of the model was ≤0.35.

#### **DISCUSSION**

This study, based on the ICF framework, related FOF with body functional abilities, social participation profile (PAPM), personal and environmental factors. The association of the predictors of FOF identifies that being a woman with restrictions on social activities performance and reduced walking speed as factors that contribute to increased FOF in older adults. The combination of these three factors can predict up to 64% of FOF in this population.

The findings of the present study highlighted that both modifiable and non-modifiable factors associate with FOF: age<sup>13</sup>, gender<sup>11</sup>, living alone<sup>45</sup>, physical inactivity<sup>17</sup>, polypharmacy<sup>46</sup>, falls in the previous year<sup>17,47</sup>,

lower self-efficacy to exercise<sup>48</sup>, environmental risk<sup>49</sup>, muscle strength<sup>15</sup>, balance<sup>26,47</sup>, agility and motor coordination 26,50; have been widely reported as risk factors for FOF in previous studies, as well as the findings of this study (Table 1). Finding a range of changeable factors related to FOF offers several points that can incorporate various prevention strategies. At the same time, it emphasizes the difficulty of intervening under a multifactorial phenomenon.

All risk factors for falls previously described were analyzed in this study, 15,16,46,50,51. However, multivariate logistic regression highlighted that our prediction model only included gender, gait speed, and social participation profile as being predicting factors for FOF (Table 2). Such a model can explain a considerable percentage of the FOF, as well as provide objective means for developing evaluation tools and therapies.

This study demonstrated that being female is a risk factor for FOF. This may be explained by the fact that greater fragility and consequent fall rates are higher in women, and the experience of falling may increase the FOF<sup>52</sup>. Thus, being a

woman becomes one of the most problematic risk factors, as it is a non-modifiable factor.

Walking speed was identified in this study as a protective factor against the FOF. For Fritz and colleagues.<sup>53</sup>, this factor was considered the sixth vital sign, and there is a consensus that it represents the best variable of functioning in the elderly. Thus, the study highlights gait speed as one of the factors that should be incorporated in future strategies to prevent FOF.

The Activities and Participation Profile Related to Mobility score was the last variable that made up the FOF prediction model and is associated with the female gender and gait speed variables. It is already known that the greater dependence on activities of daily living is associated with the FOF in the elderly<sup>26,52</sup>. Thus, PAPM ended up composing the prediction model because it reflects not only the functional aspect but also how much and which activities of daily routines are restricted.

differential of this study from others<sup>46,48,50,52,53</sup> is that it evaluated the social participation profile that is under the influence of functional abilities, a factor this study has shown to be associated with FOF. Previously, Auals and colleagues<sup>54</sup> indicated that any approach aimed at intervening on FOF, such as fall prevention strategies, should also be extended participation in daily routines, recommended by the ICF. Our findings differ from those described in previous studies that reported functional improvements according to scores or averages in separate assessments of balance, muscle strength, and other functional variables<sup>26,53,55</sup>.

Our study has limitations regarding its sample size and design. The latter did not allow

us to investigate causal relationships. However, the modifiable factors here identified, which are performance of activities of daily living and gait speed, may help developing new therapeutic strategies to reduce FOF and, consequently, the events of falls in the elderly. As noted earlier, these variables can predict up to 64% of the FOF, so strategies that are directed by them may have a more satisfactory outcome than that currently achieved with cognitive strategies only <sup>56,57</sup>. Likewise, the systematic review and metaanalysis by Kumar and colleagues 58, showed that not all exercise intervention strategies can modify the FOF in the elderly. Thus, our findings may contribute to directing development of new strategies that are based on exercise and movement.

Further studies should do a longitudinal study to identify the causal factors of FOF and to validate a therapeutic program aimed at preventing and/or controlling FOF in older adults. The association of factors such as being a female, restricted social participation and reduced walking speed stood out as the combination with the highest percentage of prediction of FOF in the participants of this study. The FOF prediction model can be studied to prevent falls, highlights important domains of according to the ICF human function.

**Funding** 

"This study was financed in part by the COMPETE 2020 (Operational Programme Competitiveness and Internationalization), European Regional Development Fund from European Union and Coordenação de Aperfeiçoamento de Pessoal de Nível superior – Brasil (CAPES) – Finance Code 001

#### **AUTHOR CONTRIBUITIONS**

**GB:** Conceptualized the study, analyzed and interpreted the data, and wrote the manuscript. **RM:** Analyzed the data and critically revised the manuscript for important intellectual content. **AC:** Contributed to the study's concept and design, supervised the research, and critically revised the manuscript for significant intellectual content.

#### **CONFLICT OF INTEREST**

The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

#### **USE OF GENERATIVE ARTIFICIAL INTELLIGENCE**

The authors declare that they have not used generative AI of any kind.

#### REFERÊNCIAS

- 1. Yosef T, Pasco JA, Tembo MC, Williams LJ, Holloway-Kew KL. Falls and fall-related injuries: prevalence, characteristics, and treatment among participants of the Geelong Osteoporosis Study. Front Public Health. 2024;12:1454117.
- 2. Cuevas-Trisan R. Balance Problems and Fall Risks in the Elderly. Clin Geriatr Med. 2019;35(2):173–83.
- 3. Gillespie L, Robertson M, Gillespie W, Lamb S, Gates S, Cumming R, et al. Interventions for preventing falls in older people living in the community (Review). Cochrane Database of Systematic Reviews. 2009;(2):1–223.
- 4. Fritz BA, King CR, Mehta D, Somerville E, Kronzer A, Ben Abdallah A, et al. Association of a Perioperative Multicomponent Fall Prevention Intervention With Falls and Quality of Life After Elective Inpatient Surgical Procedures. JAMA Netw Open. março de 2022;5(3):e221938.
- 5. Prevention of Falls Network for Dissemination. Active ageing through preventing falls: "Falls prevention is everyone's business". European Stakeholders Alliance for Active Ageing through Falls Prevention. 2015;1–8.
- 6. World Health Organization. World Health Organization. 2007. p. 53 WHO Global Report on Falls Prevention in Older Age Ageing and Life Course, Family and Community Health.
- 7. Tkacheva ON, Kotovskaya Yu V., Mil'to AS, Runihina NK, Frolova E V., Naumov A V., et al. Falls in older and senile patients. Clinical giudelines. Russian Journal of Geriatric Medicine. 10 de agosto de 2021;(2):153–85.
- 8. Lysyy N. Prevention of falls in old age. Spravočnik vrača obŝej praktiki (Journal of Family Medicine) [Internet]. 10 de janeiro de 2020 [citado 26 de dezembro de 2023];(1):68–78. Disponível em: https://typeset.io/papers/prevention-of-falls-in-old-age-2z4rzb5p42
- 9. Abou L, Rice LA. Frequency and characteristics of falls, fall-related injuries, and fear of falling among wheelchair users with spinal cord injury. Journal of Spinal Cord Medicine. 2023;46(4):560–8.
- 10. Vellas BJ, Wayne SJ, Romero LJ, Baumgartner RN, Garry P. Fear of falling and restriction of mobility in elderly fallers. Age Ageing. 1997;26:189–93.
- 11. Gazibara T, Kurtagic I, Kisic-tepavcevic D, Nurkovic S. Falls, risk factors and fear of falling among persons older than 65 years of age. PSYCHOGERIATRICS. 2017;1–9.
- 12. Lee D, Tak SH. A concept analysis of fear of falling in older adults: insights from qualitative research studies. BMC Geriatr. 10 de dezembro de 2023;23(1).
- 13. Lim E. Original Article Sex Differences in Fear of Falling among Older Adults with Low Grip Strength. Iram Journal Public Health. 2016;45(5):569–77.
- 14. You L, Guo L, Li N, Zhong J, Er Y, Zhao M. Association between multimorbidity and falls and fear of falling among older adults in eastern China: a cross-sectional study. Front Public Health. 2023;11.
- 15. Korenhof S (S A)., van Grieken A (A)., Franse C (C B)., Tan SS (S S)., Verma A (A)., Alhambra T (T)., et al. The association of fear of falling and physical and mental Health-Related Quality of Life (HRQoL) among community-dwelling older persons; a cross-sectional study of Urban Health Centres Europe (UHCE). BMC Geriatr. 10 de dezembro de 2023;23(1).
- 16. dos Santos EPR, Ohara DG, Patrizzi LJ, de Walsh IAP, Silva C de FR, da Silva Neto JR, et al. Investigating Factors Associated with Fear of Falling in Community-Dwelling Older Adults through Structural Equation Modeling Analysis: A Cross-Sectional Study. J Clin Med. 10 de janeiro de 2023;12(2).
- 17. Moreira BDS, Sampaio RF, Bergamas- J, Diz M, Bastone ADC, Ferriolli E, et al. Factors associated with fear of falling in community-dwelling older adults with and without diabetes mellitus: findings from the Frailty in Brazilian Older People Study (FIBRA-BR). Exp Gerontol. 2017;

- 18. Rink L, Tomandl J, Womser S, Kühlein T, Sebastião M. Development of a subset of the international classification of functioning, disability and health as a basis for a questionnaire for community-dwelling older adults aged 75 and above in primary care: a consensus study. BMJ Open. 24 de agosto de 2023;13(8).
- 19. de Clercq H, Naudé A, Bornman J. Development and Utility of an International Classification of Functioning, Disability and Health Code Set for Younger-Old Adults With Fall Risk: Implications for Audiologists. Am J Audiol. 10 de dezembro de 2022;31 (4):1116–32.
- 20. Banerjee A, Banerjee KR, Physiother AJ, Kumar R. Using the International Classification of Functioning, Disability and Health (ICF) to find out About Impairments Affecting Falls Self-efficacy in Community-Dwelling Older Adults in Journal of Physiotherapy and Rehabilitation Using the International Classification of Functioning, Disability and Health (ICF) to find out About Impairments Affecting Falls Self-efficacy in Community-Dwelling Older Adults in India. Journal of Physiotherapy and Rehabilitation [Internet]. 29 de setembro de 2020;4(3):1–5. Disponível em: https://www.researchgate.net/publication/346631324
- 21. Liu YWJ. The severity and associated factors of participation restriction among community-dwelling frail older people: an application of the International Classification of Functioning, Disability and Health (WHO-ICF). BMC Geriatr. 31 de janeiro de 2017;17(1):1–11.
- 22. Moreira NB, Rodacki ALF, Pereira G, Bento PCB. Does functional capacity, fall risk awareness and physical activity level predict falls in older adults in different age groups? Arch Gerontol Geriatr. 2018;77:57-63.
- 23. Chang H ting, Chen H chung, Chou P. Fear of falling and mortality among community-dwelling older adults in the Shih-Pai study in Taiwan: A longitudinal follow-up study. Geriatr Gerontol Int. 2017;1–8.
- 24. Allali G, Ayers El, Holtzer R, Verghese J. The role of postural instability / gait difficulty and fear of falling in predicting falls in non-demented older adults. Arch Gerontol Geriatr. 2017;69:15–20.
- 25. Whipple MO, Hamel A V, Talley KMC. Fear of falling among community-dwelling older adults: A scoping review to identify effective evidence-based interventions. Geriatr Nurs (Minneap). 2018;39(2):170–7.
- 26. Rodrigues F, Monteiro AM, Forte P, Morouço P. Effects of Muscle Strength, Agility, and Fear of Falling on Risk of Falling in Older Adults. Int J Environ Res Public Health. 10 de março de 2023;20(6).
- 27. Hadjistavropoulos T, Delbaere K, Fitzgerald TD. Reconceptualizing the Role of Fear of Falling and Balance Confidence in Fall Risk. J Aging Health. 2011;23(1):3–23.
- 28. Kabeshova A, Annweiler C, Fantino B, Philip T, Gromov VA, Launay CP, et al. A regression tree for identifying combinations of fall risk factors associated to recurrent falling: A cross-sectional elderly population-based study. Aging Clin Exp Res. 2014;26(3):331–6.
- 29. Lachman ME, Howland J, Tennstedt S, Jette A, Assmann S, Peterson EW. Fear of Falling and Activity Restriction: The Survey of Activities and Fear of Falling in the Elderly (SAFE). J Gerontol B Psychol Sci Soc Sci. 1998;53B(1):P43–50.
- 30. WHO WHO. Physical status: the use of and interpretation of anthropometry. Em: WHO expert committee. Geneva: WHO Library Cataloguing in Publication Data; 1995. p. 463.
- 31. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.
- 32. Brucki SMD, Nitrin R, Caramelli P, Bertolucci PHF, Okamoto IH. Suggestions for utilization of the minimental state examination in Brazil. Arq Neuropsiquiatr. 2003;61 (3 B):777–81.
- 33. Martins AC, Moreira J, Silva C, Silva J, Tonelo C, Baltazar D, et al. Multifactorial screening tool for determining fall risk in community-dwelling adults aged 50 years or over (FallSensing): Protocol for a prospective study. J Med Internet Res. 2018;20(8):1–11.
- 34. Tinetti ME, Richman D, Powell L. Falls Efficacy as a Measure of Fear of Falling. J Gerontol. 1990;45(6):239–43.
- 35. Barker AL, Bird ML, Talevski J. Effect of pilates exercise for improving balance in older adults: A systematic review with meta-analysis. Arch Phys Med Rehabil. 2015;96(4):715–23.
- 36. Mendes E, Pepersack T, Godin I, Bantuelle M, Petit B, Levêque A. Fear of falling and associated activity restriction in older people . results of a cross-sectional study conducted in a Belgian town. Archives of Public Health. 2012;70(1):1.
- 37. Heseltine R, Skelton DA, Kendrick D, Morris RW, Griffin M, Haworth D, et al. "Keeping Moving": factors associated with sedentary behaviour among older people recruited to an exercise promotion trial in general practice. BMC Fam Pract. 2015;16(67):1–9.
- 38. Luna-Heredia E, Martín-Peña G, Ruiz-Galiana J. Handgrip dynamometry in healthy adults. Clinical Nutrition. 2005;24(2):250–8.
- 39. Podsiadlo D, Richardson S. The Timed "Up & Go": A Test of Basic Functional Mobility for Frail Elderly Persons. Journal of American Geriatrics Society. 1991;39(2):142–8.

Bueno, GA; Menezes, RL; Martins, AC. ARTIGO ORIGINAL

40. Jones CJ, Rikli RE, Beam WC, Jones CJ, Rikli RE, Chair- WCBA, et al. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res Q Exerc Sport. 1999;70(2):113–9.

- 41. Martins AC, Silva J, Santos A, Madureira J, Alcobia C. Case-Based Study of Metrics Derived from Instrumented Fall Risk Assessment Tests. Gerontechnology. 2016;(August).
- 42. Rossiter-Fornoff JE, Wolf SL, Wolfson LI, Buchner DM, Group F, Acknowledgments S. A Cross-sectional Validation Study of the FICSIT Common Data Base Static Balance Measures. J Gerontol. 1995;50(6):291–7.
- 43. Novaes RD, Miranda AS, Dourado VZ. Usual gait speed assessment in middle-aged and elderly Brazilian subjects. Braz J Phys Ther. 2011;15(2):117–22.
- 44. Disease C for, Control and Prevention. National Center for Injury Prevention and Control. 2017. p. 2 Check for Safety A Home Fall Prevention Checklist for Older Adults. Disponível em: https://www.cdc.gov/steadi/pdf/STEADI-Brochure-CheckForSafety-508.pdf
- 45. Park J il, Yang J chul, Chung S. Risk Factors Associated with the Fear of Falling in Community-Living Elderly People in Korea: Role of Psychological Factors. Psychiatry Investig. 2017;14(6):894–9.
- 46. Rivasi G, Anne R, Ungar A, Romero-ortuno R. Predictors of Incident Fear of Falling in Community-Dwelling Older Adults. J Am Med Dir Assoc. 2019;1–6.
- 47. Hoang OTT, Jullamate P, Piphatvanitcha N, Rosenberg E. Factors related to fear of falling among community-dwelling older adults. J Clin Nurs. 2016;26:68–76.
- 48. Bandura A. Self-efficacy: Toward a Unifying Theory of Behavioral Change. Psychol Rev. 1977;84(2):191–215.
- 49. Young WR, Mark Williams A. How fear of falling can increase fall-risk in older adults: Applying psychological theory to practical observations. Gait Posture. 2015;41(1):7–12.
- 50. Bueno GAS, Gervásio FM, Ribeiro DM, Martins AC, Lemos TV, de Menezes RL. Fear of falling contributing to cautious gait pattern in women exposed to a fictional disturbing factor: a non-randomized clinical trial. Front Neurol. 2019;10(283):1–11.
- 51. Yang F, Kim J, Munoz J. Adaptive Gait Responses To Awareness of an Impending Slip During Treadmill Walking. Gait Posture. 2016;
- 52. Alcolea-Ruiz N, Alcolea-Ruiz S, Esteban-Paredes F, Beamud-Lagos M, Villar-Espejo MT, Pérez-Rivas FJ. Prevalence of fear of falling and related factors in community-dwelling older people. Aten Primaria. 10 de fevereiro de 2021;53(2).
- 53. Heiberg KE, Beckmann M, Bruun-Olsen V. Prediction of walking speed one year following hip fracture based on pre-fracture assessments of mobility and physical activity. BMC Geriatr. 10 de dezembro de 2024;24(1).
- 54. Auais MO, Alvarado B, Guerra R, Curcio C, Freeman EE, Ylli A, et al. Fear of falling and its association with life-space mobility of older adults: a cross-sectional analysis using data from fi ve international sites. Age Ageing. 2016;0:1–7.
- 55. Moreira MN, Bilton TL, Dias RC, Ferriolli E, Perracini MR. What are the Main Physical Functioning Factors Associated With Falls Among Older People With Different Perceived Fall Risk? Physiotherapy Research International. 2016;(2016).
- 56. Choudhury R, Park JH, Banarjee C, Coca MG, Fukuda DH, Xie R, et al. Associations between monitor-independent movement summary (MIMS) and fall risk appraisal combining fear of falling and physiological fall risk in community-dwelling older adults. Frontiers in Aging. 2024;5.
- 57. Hill M, Brayne L, Hosseini E, Duncan M, Muehlbauer T, Lord SR, et al. The influence of fear of falling on the control of upright stance across the lifespan. Gait Posture. 10 de março de 2024;109:226–32.
- 58. Kumar A, Delbaere K, Zijstra GAR, Carpenter H, Iliffe S, Masud T, et al. Exercise for reducing fear of falling in older people living in the community: Cochrane systematic review and meta-analysis. Age Ageing. 2016;45:345–52