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Resumo: O processo numérico de Cross, famoso e amplamente utilizado até o fim dos anos setenta,
aproximadamente, nos calculos de projetos estruturais, pela sua simplicidade, do ponto de vista matematico,
tomando-se em conta a dificuldade que representava a resolucéo de sistemas de equages, ainda é ensinado nas
disciplinas de Teoria das Estruturas na maioria das universidades do pais, sendo a justificativa para tal pratica,
segundo Martha (2010), mesmo com a pouca utilidade do processo na atual fase da engenharia, é o forte apelo
didatico que ele possui no ensino do comportamento de estruturas reticuladas planas submetidas a flexdo. Este
trabalho apresenta uma outra alternativa de resolugdo do processo de Cross atraves de um tratamento matricial de
suas etapas de resolucdo, possibilitando ainda a sua automatizacdo do célculo dos esforgcos em vigas e porticos
planos quando submetidos a agBes externas, sendo facilmente generalizada para outros tipos de aces. A
formulacdo matricial de todas as etapas do processo € exposta e analisada posteriormente, dando a possibilidade
da elaboracdo de um algoritmo para um programa de computador que faga a automatizagdo das iteracdes. Sao
apresentados exemplos de estruturas cujos resultados sdo comparados com os resultados obtidos da forma
tradicional de resolugdo pelo Método dos Deslocamentos.

Palavras-chave: Cross, Andlise matricial, Processo iterativo.

Resumen: El proceso numérico de Cross, famoso y muy utilizado hasta finales de los afios setenta,
aproximadamente, en los calculos de proyectos estructurales, debido a su simplicidad, desde el punto de vista
matematico, teniendo en cuenta la dificultad que representaba en la resolucion de sistemas de ecuaciones, ain se
imparte en las materias de Teoria de Estructuras en la mayoria de las universidades del pais, y la justificacion para
esta practica, segin Martha (2010), ain con la poca utilidad del proceso en la actual fase de la ingenieria, es la
fuerte didactica atractivo que tiene en la ensefianza del comportamiento de estructuras reticulares planas sometidas
a flexion. Este trabajo presenta otra alternativa para la resolucion del proceso Cross a través de un tratamiento
matricial de sus etapas de resolucion, permitiendo ademas automatizar el calculo de esfuerzos en vigas y porticos
planos al ser sometidos a acciones externas, siendo facilmente generalizada para otro tipo de acciones. La
formulacién matricial de todas las etapas del proceso es expuesta y analizada posteriormente, dando la posibilidad
de la elaboracién de un algoritmo para un programa de computador que haga la automatizacion de las iteraciones.
Son presentados ejemplos de estructuras cuyos resultados son comparados con los resultados obtenidos de la forma
tradicional de resolucién mediante el Método del Desplazamiento.

Palabras clave: Cross, Analisis matricial, Proceso iterativo.
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Introducéo

A forma como as estruturas se comportam quando submetidas a acGes é de fundamental
importancia para o engenheiro civil, principalmente na fase de concepgdo de um projeto
estrutural, em que sdo predefinidas as posi¢des de elementos estruturais como pilares e vigas.
A avaliacdo das posicdes desses elementos em um projeto de estruturas é baseada no julgamento
do projetista, que leva em conta todo seu conhecimento de teoria das estruturas para estimar e
ponderar as necessidades e viabilidades desses elementos no projeto antes da fase de analise
estrutural.

A analise estrutural, segundo Martha (2010), é a fase do projeto em que é feita a
idealizacdo do comportamento da estrutura. De forma geral, o objetivo da analise estrutural é
determinar esforgos internos e externos (solicitacbes e reacOes de apoio), e as suas
correspondentes tensdes, bem como os deslocamentos e correspondentes deformacdes da
estrutura que estd sendo projetada. Essa analise deve ser feita para 0s possiveis estagios de
carregamentos e solicitagdes que devem ser previamente determinados.

A programagdo auxilia o engenheiro a desenvolver a capacidade de resolver grandes
problemas dividindo-os em outros de menor complexidade e estruturando procedimentos e
rotinas para a solucdo destes. Essa contribuicdo por si sO possui enorme relevancia na
otimizacdo do tempo gasto em calculos e raciocinios aplicados a engenharia, porém a
automatizacdo desses célculos traz ao engenheiro a possibilidade de resolver problemas
praticamente insolGveis manualmente.

A tecnologia proporciona o uso de computadores para célculos, que os analistas
estruturais utilizam para facilitar e melhorar o processo de analise de estruturas de forma
produtiva e segura. O objetivo da analise matricial de estruturas é de automatizar 0s

procedimentos de célculo dos dois grandes métodos da Teoria das Estruturas: o Métodos dos
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Esforcos! e o Método dos Deslocamentos?, para auxiliar na fase de projeto correspondente a
andlise estrutural.

Segundo Lopes et al. (2005) em publicacdo ao Congresso Brasileiro de Educacao em
Engenharia - COBENGE, na década de 1960, com o surgimento de computadores e
automatizacao de célculos, o Método dos Deslocamentos, por meio de enfoque matricial, foi
tomado como o mais eficiente, em termos de implementacdo computacional, em relacdo aos
outros da época. Os demais métodos e técnicas tradicionais utilizados até entdo, como o
Processo de Cross, foram suplantados por serem considerados pouco produtivos em termos de
programacgéo. Infelizmente esta eficiéncia computacional ndo contribuiu da forma esperada
para o entendimento dos conceitos da Teoria das Estruturas por parte dos alunos de graduacédo
em Engenharia.

A anélise matricial do Método da Rigidez (MOREIRA, 1977) proporciona boa adaptacao
a linguagem de computador, pois salta partes fatidicas de calculo através da automatizacéo da
resolucdo de sistemas lineares. Contudo essa boa adaptacdo ndo apresenta para 0 usuario, no
caso estudantes de cursos de engenharia, uma visualizacao e entendimento do comportamento
gradual da estrutura quando submetida a carregamentos.

A falta de conhecimento e sensibilidade desse comportamento da estrutura quando
submetida a carregamentos acarreta uma série de dificuldades para o engenheiro, que necessita
de tais conhecimentos para boa compreensdo de muitos conceitos e critérios relativos a boa
elaboracdo de projetos estruturais.

Essa problematica levanta a questdo que a instrucdo dos programas introduzidos nos
cursos de andlise estrutural € geralmente limitada apenas & determinacdo de respostas finais
(FERRO, 2001). Isso faz com que alguns detalhes sobre a analise passem despercebidos,
fazendo do programa uma verdadeira “caixa preta” que o aluno ndo compreende corretamente

o funcionamento e obtencdo dos resultados (O’NEILL et al., 1995 apud LOPES et al., 2005).

1 Método dos Esforcos, das Forgas ou da Flexibilidade é o grande método da hiperestatica que utiliza a matriz de
flexibilidade para o céalculo dos esforgos de uma estrutura (SUSSEKIND, 1993).

2 Método dos Deslocamentos, também conhecido como Método da Rigidez, do Equilibrio ou das Deformagdes, é
0 segundo grande método da Teoria das Estruturas que utiliza a matriz de rigidez para o calculo dos deslocamentos
nodais de uma estrutura (SUSSEKIND, 1991).
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Uma das principais caracteristicas do Processo de Cross no ensino da Teoria das
Estruturas, nos dias de hoje, é proporcionar ao aluno de engenharia uma alternativa didatica e
intuitiva de visualizar o comportamento das estruturas em relacdo as acfes atuantes, aos seus
vinculos, a rigidez e posicao de cada um dos seus elementos.

Com base neste e nos argumentos anteriores, o0 presente trabalho propde o tratamento
matricial, com vias a sua implementacdo computacional, do Processo de Cross, aplicado a vigas

e porticos planos indeslocaveis.

Metodologia

Uma estrutura reticulada é constituida por membros retos (sem curvatura), cuja dimenséo
do comprimento é muito maior quando comparada com as dimensdes de sua se¢do transversal.

Segundo Gere e Weaver (1965), quando uma estrutura é solicitada por forcas, os
membros desta estrutura sofrem pequenas mudancas na forma (deformacBes) e, como
consequéncia, pontos dentro da estrutura deslocam-se para novas posi¢des. Um deslocamento
¢ uma translacdo ou rotacdo em algum ponto de uma estrutura, causada pelos efeitos
acumulados das deformacbes de todos os elementos. A translacdo refere-se a distancia
percorrida por um ponto da estrutura e uma rotacdo significa a ocorréncia de um giro em relacao
ao posicionamento inicial. Considerando-se uma estrutura (Figural), trabalhando sob o regime
elastico de tensdes, pode-se afirmar que o conjunto de efeitos atuantes em uma barra (Figura 2)
da estrutura € igual a soma dos efeitos individuais de cada um deles na barra. Essa afirmacéo é

dita como o principio da superposicdo de efeitos e esta ilustrada na Figura 3.

Figura 1 - Estrutura Reticulada Plana.

Fonte: Dos proprios autores.
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Figura 2 — Barra biengastada jk.
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Fonte: Dos proprios autores.

Figura 3 - Analise dos deslocamentos da barra jk.
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Fonte: Adaptado de Freitas Neto et al., 1979.

Utilizando-se o principio de superposicgdo de efeitos, como se observa na Figura 2, no N6
j tem-se:

MJ =mjk+ajk9J+ka6k+chka (1)
Sendo:

bjk=by;=aj tik (2)
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Logo:

MJ ijk+ajk.6j +ajk.tjk.9k+cjk.pkj (3)

Sendo aj, bjk e cjk 0s fatores de forma de 22 espécie. Conforme Freitas Neto et al. (1979)
essa concluséo pode ser estendida a barras engastadas apoiadas, ou, em outras palavras, aos

fatores de forma derivados a’j e ¢’jk. Os fatores de forma sdo expressos da seguinte forma:
4E1,

“4)

)

(6)

(7

= ®)
Sendo:

E — Mddulo de elasticidade longitudinal da barra.

Ic - Momento de Inércia de comparacdo da estrutura.

L — Comprimento real da barra.

L’ — Comprimento el&stico da barra.

O comprimento elastico é definido como:
L=—=L 9)

Sendo:
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I - Momento de Inércia real da barra.

A partir da equacéo (2), obtém-se o coeficiente de transmisséo (chamado também de
fator de transposicao) tik do no j para o né k:

t,=— (10)
jk ay,

A condicéo para que uma estrutura seja considerada indeslocavel, € que os deslocamentos

ortogonais reciprocos sejam nulos, ou seja:
P =0 (11)

Logo a equagéo 3, fica:
Mjk=mjk+ajk.6j+ajk.tjk.6k (12)

Sendo a barra jk uma das barras ligadas ao né j, como se mostra na Figura 1, tem-se:

Figura4 — N6s 1, 2, 3 e 4 adjacentes ao nd j.

M:
3t Mgi;;\ B jk=1
M
Fonte: Adaptado de Freitas Neto et al., 1979.
Aplicando a equacdo (12) no no j, tem-se:
M; =m;; +a;;.6;+a;1.41.6, (13)
Mjy=mj+aj5.0;+aj.t2.02 (14)
Mj3=mj3+aj3.6j+aj3.tj3.93 (15)
Mja=mjstajq 0 aa.tia.Og (16)
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A condicéo de equilibrio do n6 j é dada por:

Mj1+Mj2+Mj3+Mj4:0 (17)
Logo:
4 4 4
Z my 0. Y ag t z a1t 04 =0 (18)
k=1 k=1 k=1

Na primeira aproximacdo admite-se que as rotagdes dos nos k sejam consideradas nulas.
O que equivale a dizer que:
91292:93294:0 (19)

Com tais consideragdes a equacdo (18) pode ser reescrita como:
4 4
Z l’Iljk + Z ajkBJ =0 (20)
k=1 k=1

4
o Dk=1 Mk

1Y% . 0
Y1 k-0,

ey

O numerador da equacdo (21) é chamado de momento de fixacao do né j, escrito de forma

simplificada como:

Desta forma, 0s momentos iniciais do no j ficam sendo:

. (23)

O_ . .
M'l_mJl'aJl'Z4 a
k=1 %k

J

o 24)
Zﬁ:l 4k

0 _
sz—mjz-ajz.

m.
— (25)
k-1 ajk

m.
4—1 (26)
Y1 4k

0 _
Mj3—mj3-aj3.

0 _
M~4—mj4-aj4.

J

E definido como coeficiente de distribuicdo do né j na barra jk a seguinte expresso:
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dik
d ]

S — (27)
! 2ﬁ=1 ik

Sendo que:

4
k=1

Finalmente, os momentos iniciais resultam:

Mj)=mj -d;;.m, (29)
My =mjp-dip.my (30)
Mjy=mj3-dj3.m; (31)
Mjy=myy-dig.my (32)

Nos outros nds da estrutura repete-se 0 mesmo procedimento encontrando assim uma
solucéo inicial para os momentos fletores nas extremidades de todas as barras, na primeira
aproximacéo.

Voltando ao né j, os momentos iniciais nas extremidades k, isto &, M%;j, M%; M%; MY%;,
serdo transmitidos para o no j através dos coeficientes de transmissédo txj conforme a Figura 5
(FREITAS NETO et al., 1979).

Figura 5 — Transmissao dos nds k para o nd j.

Fonte: Adaptado de Freitas Neto et al., 1979.

No nd j o momento resultante seré:
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0_n 10 0 0 0
l'IlJ 7M1_]t1_]+M2Jt2J+M3Jt3J+M4] t4_] (33)
Sendo m% o momento de fixacdo da primeira aproximacao.
]

A situacdo anterior se repete e, por um raciocinio idéntico ao que foi feito, ocorrera uma
distribuicdo deste momento m® para as extremidades das barras que concorrem no nd j, através
dos coeficientes de distribuicdo djk.

Aplicando-se a superposicdo de efeitos, obtém-se uma segunda aproximacdo de

momentos no né j, os quais ficam da seguinte forma:

M| =M MYty -m!.djy (34)
Mp=Mp+M3;.ty-m!.di (33)
Mj5=M{;+M3;.tz;-m{.d3 (36)
M{=M+Mg; ty-m).diy (7

Realizando-se 0 mesmo procedimento para os outros nds, obtém-se os momentos M2,
My M3 MY, os quais serdo novamente transmitidos para o né j. Continuando com o
procedimento, obtém-se novos valores para M?3j, M2, M%3; M4 de forma iterativa, até que se
consiga a aproximacédo desejada n, para os valores M"gj, M"; M"3j M"y;.

Tratamento matricial do processo de Cross

A analise matricial do Processo de Cross aplicado a estruturas apenas com
deslocabilidade interna ou rotacional (Figura 6) € realizada segundo a proposta apresentada por
Freitas Neto et al. (1979). No Processo de Cross, procura-se obter os momentos incdgnitos nas
extremidades das barras. Para isto &€ necessario adotar um sistema de coordenadas para
determinar de forma ordenada e univoca a posicdo e sentido desses momentos, 0s quais, no
presente trabalho, sdo considerados como positivos no sentido anti-horario, conforme se indica

na Figura 7.
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Figura 6 - Exemplo de estrutura indeslocavel.

Fonte: Dos proprios autores.

Figura 7 - Sistema de Coordenadas para a estrutura da Figura 6.

g :3\1 zl/-' B Q\E j/ D
7 s | AW
A \

Fonte: Dos préprios autores.
Matriz de distribuicéo

A matriz de distribuicdo [D] é composta pelos coeficientes de distribui¢do dj, a sua
funcdo é distribuir os momentos de fixacdo dos nds nas suas barras adjacentes, procurando o
equilibrio dos mesmos. A formulacdo dessa matriz é analoga a formulacdo da tradicional matriz
de incidéncia (MOREIRA, 1977). Para o caso da estrutura da Figura 7 fica:
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0 0 0 0
-dga  -dpa -dga O
0

S OO

-dgc  -dpc  -dpc
-dgp -dgp -dgp O 0
0 0 0 0 0

| g |

=)

e

Il
Scocoocoococoo
coocococoo

Matriz de transmissao

A matriz de transmissdo [T], chamada também de matriz de transporte ou transposicao,
é composta pelos coeficientes de transmissdo tjk que tem como func¢do, propagar aos nds das
extremidades opostas das barras, os efeitos dos momentos distribuidos pela matriz de
distribuicdo [D] (FREITAS NETO et al., 1979). No caso da estrutura da Figura 7, tem-se:

"0 tgy 0 O O 0 01
tag 0 0 0O 0 0 0
O 0 0 0 0 0 0
M=|0 0 0 0 tp 0 O
0 0 0 tgg O O 0
0 0 0 0 0 0 tgp
0 0 0 0 0 tyy O

Vetor dos momentos de engastamento perfeito

O vetor {M,} é o0 vetor constituido pelos Momentos de Engastamento Perfeito da
estrutura, de acordo com Freitas Neto et al. (1979). Esses momentos também sdo chamados de

Fatores de Carga de 2% Espécie ou fatores de rigidez. Para o caso da Figura 7, esse vetor é:

(TNAB
mpa
m'pc
{M,}= { mpp ;
mpp

MpEg
\ mED J

Mecanismo de iteracdo do processo de Cross em estruturas com deslocabilidade

exclusivamente rotacional
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O desenvolvimento do processo iterativo sera feito exatamente como preconiza Cross
(1930).

1) Estando, inicialmente, todos os nos bloqueados, 0s momentos serao:

{ML}

2) Libertando simultaneamente todos os nds, surgem os momentos equilibrantes:

{M;}=[D]{M.}

3) Transmitindo os efeitos para as extremidades opostas, tem-se:

{ML}=[TH{M }=[T][D]{M.}

4) Distribuindo novamente, resulta:

{M;}=[D]{M,}=[D][T][D]{M.}

5) Transmitindo mais uma vez:

{M}=[TI{M;}=[T][D][T][D]{M.}

6) Prosseguindo com a distribuicdo, tem-se:

{Ms}=[D]{M,}=[D][T][D][T][D]{M.}
E assim segue sucessivamente, distribuindo os momentos com indices impares e

transmitindo os momentos com indices pares. Efetuando-se a somatdria desses momentos
(FREITAS NETO et al., 1979), para obter-se os momentos finais {M}, resulta:

(M}= ) {(MJ=(M.+{DHM}+{TI[D}{M}+{D] T][DI{M+[TI[DI[T] [DI{M,}...
i=0

Considerando-se o produto matricial [T][D]=[Q], e a Matriz Identidade de [I], obtém-se:

{M}=([]+[DD (HHQI+QI*+[Q*+...+[QI") {M.} (38)

Na da equacéo (38), a matriz [Q] tem seus valores menores que a unidade e o segundo
terno entre parénteses, constitui uma série geométrica de matrizes cuja razdo [Q] tem seus

elementos menores que a unidade, o que justifica a convergéncia do Processo de Cross segundo

228



REVISTA

MIRANTE

Revista Mirante, Andapolis (GO), v. 18, n. 3, p. 216-237, dez. 2025. ISSN 1981-4089

Freitas Neto et al. (1979) e Moreira (1977). Ainda, segundo West (1980), devido a essa
convergéncia que apresenta o processo de distribui¢cdo de momentos, a equacao (38) converge

a uma solucéo exata dos momentos finais, dada por:
{M}=([1]+[DD) ([1]-[Q]) " {M.} (39)
O que monstra que a série geométrica de matrizes da equacéo (38) pode ser obtida através
da inversdo da matriz da diferenga entre [1] e [Q].

Resultados e discussao

Exemplo 1: Viga continua submetida a carga externa.

Figura 8 — Viga continua.

15 kN/m 30kN
Al LB 11l L . DL 1 ST A
| | | | | I
l__ 2m __1__ 6m __1__ 2m __L 4m __1__ Jm __1 2m __1
L L b L b bl L

30kN| 15 KN/m 30 kN

ol T

Fonte: Dos proprios autores.

H—
b
b

A viga mostrada na Figura 8, resolvida pelo Método dos Deslocamentos em Calderon et
al., (2011), apresenta resultados dos momentos finais nos nés C e D (Expressdo 40), os quais

permitem o tragado do seu diagrama do momento fletor, mostrado na Figura 9.

Mcg)  (—40,28
M| ) 4028

M= e (T )-1870 (40)
Mp; 18,70
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Figura 9 — Diagrama do momento fletor da viga da continua.

4028
67.50 :
3000 ocann= W T 4 0_0_?
:’% ‘I' l -------- 18,70
AN N
(Nm)

52,52

Fonte: Dos préprios autores.

Para resolver estrutura da Figura 8 pelo Processo de Cross de forma matricial é utilizado

0 sistema de coordenadas indicado na Figura 10.

Figura 10 — Sistema de coordenadas da viga da continua.

2 4
(N (g ¢
iy \g y, \S‘ﬁ y, 2
Fonte: Dos proprios autores.

a) Matriz de Distribuicéo

-0,360 —0,360 0 0

[D]= —-0,640 —0,640 0 0
0 0 -0,690 -0,690
0 0 -0,310 -0,310

Obtencdo dos principais termos da Matriz [D]:

230



REVISTA

MIRANTE =

Revista Mirante, Anapolis (GO), v. 18, n. 3, p. 216-237, dez. 2025. ISSN 1981-4089

4/
3
dzz le _0,640
3/4+4/3
¥
3
dy3=d3y 0,690
4/3+3/5
3/
5
d44:d34 _0,3 10
4/3+3/5
b) Matriz de Transmisséo
0 0 0 0
~_10 0 05 0
TI= {o 05 0 0
0 0 0 0

c) Vetor dos Momentos de Engastamento Perfeito

mq —52,50
_Ymy ) 26,67
Ma}= m3 (=) 213,33
my 26,00
Obtencéo dos termos do vetor {M,}:
156> 1
m;=— B +§(2-0-3)= — 52,50 kNm
2-4°
my= o =26,67 kNm
3-22-4
mz=— s—=— 13,33 kNm
6
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(—=10) [/3:2*
my= > <?-1>=26,00kNm
d) Produto Matricial [T][D] = [Q]
0 0 0 0
_ 0 0 —0,345 —0,345
Q= —-0,320 —0,320 0 0
0 0 0 0
e) Matriz Identidade
1 0 0 O
_{01 0 o0
1= 0 0 1 0
0 0 0 1
f) Momentos Finais
{M}=([1]+[DD ([+[QI+[QI*+[QI*+[QI*+[QT° ){M.} (41)

Aplicando-se a equacdo (38) e realizando-se as potenciacdes da matriz [Q] até a quinta

poténcia, para uma aproximacédo de duas casas decimais, tem-se:

Mcg)  (—40,28
M| ) 4028

M= o (T )-18,71 (42)
Mps 18,71

Ainda segundo West (1980) pode-se evitar a potenciacdo da matriz [Q], utilizando a

equacéo (39), obtendo-se os seguintes momentos finais:

Mcp —40,28
M=AN+PD QD (M= 2 4= 4 402 @3)
My 18,70

Como esté técnica ndo utiliza diretamente as iteracGes, foge ao objetivo principal desse
trabalho, mas é valida e demonstra de forma matricial o Processo de Cross, podendo ser
utilizada apenas para demonstracdo e conferéncia dos resultados obtidos, comprovando-se
assim, a validade e precisdo do mecanismo do Processo de Cross formulado.

Exemplo 2: Pértico indeslocavel submetido a carga externa.
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Figura 11 — Pértico indeslocavel.

D
i 8tf-m(3____;L ___________
| Av | c
! 5m boom | 4m '

Fonte: Dos proprios autores.

O portico mostrado na Figura 11, resolvida pelo Método dos Deslocamentos em Calderén
etal., (2011), apresenta resultados dos momentos finais nos nés D e E (Expressédo 44), os quais

permitem o tragado do seu diagrama do momento fletor, mostrado abaixo.

(Myp 45,33
Mpy —34,35
_JMpg| ] —0,02
M= M, (7 3437
Mgy l—29,30J
(Mg, 29.30

g) Matriz de Distribuicao

0 0 0 0 0 0 |
0 -0361 -0361 -0361 0 0
0 -0338 -0338 0338 0 0
[DI= [0 -0301 -0,301 -0301 0 0
0 0 0 0 0471 0471
0o 0 0 0 -0529 -0529
Obtencéo dos principais termos da Matriz [D]:
4
d22=d23 /5 =0,361

N Y E—
4/5+2/3+3/4
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’/

N s -
/5+/3+/4
d33 = d32 = d34=1-(0,361+0,301)=0,338

’/

3
2/ 3t 3/ 4
dgs=dgs=1-(0,471)=0,529

d44 = d42 :0,301

d55 = d56: :0,471

- Y-
(= B = N N I =]
=R R = =]
it

= R B = TS

my 41,67

!(mzl —41,67
_Jmsz| ] —6,88
{Mo}= ) 35,56

' msJ ~1778
45,70

Obtencdo dos principais termos do vetor {M,}:

2
™=

=41,67 kNm

m;3

~(—80) (32,52
2 42

- 1) =— 6,88 kNm
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40-2-4%
-=

=35,56 kNm

-4
ms= — ———=— 17,78 kNm

_T (2,5 + 4):45,70 kNm

J) Produto Matricial [T][D] = [Q]

0 0180 -0.180 -0.180 0 0
0 ] 0 0 1] ]
0 ] 0 0 1] ]
[Q]: 0 ] 0 0 -0236 0236
0 0,150 -0.150 -0.150 0 ]
o o 0 0 0 0o |
Matriz ldentidade
100 0 0 0
0 1 0 0 0 0
_joo 1 0 0 0|
=10 0 0 1 0 o
lo 00 0 1 oJ
00000 1

Os momentos finais sdo obtidos aplicando-se a equacdo (38) realizando-se as

potenciacdes da matriz [Q], para uma aproximacao de duas casas decimais, até [Q]°, resultando:

(3,007
(Map) 26,49
Mpa 2,17
MDB g
{M}= Mo (=) +8,67 ¢
DE
¥ -6,74
v +6,74
EC \+0,01/

Segundo West (1980), aplicando-se a equacdo (40), obtém-se:
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+3,00
[ %AD‘ -6,49
MDA 2,17
{M}==([I]+[D])([I]-[Q])'I{Mo}{ Mzi P = {18,67;
| Mgy -6,74
L M) +6,74
\+0,01/

Cujos resultados, utilizando-se dois digitos ap0s a virgula, sdo praticamente iguais, o que
comprova a validade e a precisdo do mecanismo do Processo de Cross formulado.

Conclusodes

A partir das comparac0es feitas, pode-se concluir que o tratamento matricial do Processo
de Cross € uma alternativa metodoldgica eficiente para o calculo de estruturas reticulares planas
indeslocaveis, uma vez que os momentos resultantes obtidos dessa forma convergem para 0s
valores exatos. A convergéncia para valores exatos, também pode ser provada, a partir da série
de geométrica formada pelas matrizes (Equacdo 38), resultantes das iteracfes inerentes do
processo de Cross.

Pode-se observar que o tratamento matricial do Processo de Cross, pela simplicidade do
processo, torna possivel a sua implementacdo computacional, permitindo a consideracéo de
outros tipos de acGes, devido a que o Método dos Deslocamentos é bastante adequado para este
fim, para tais casos, seria necessario mudar apenas o vetor correspondente as acdes {Mo},
ficando os demais célculos inalterados. A implementacdo do tratamento matricial do Processo
de Cross tambem pode ser facilmente estendida para estruturas deslocaveis, isto €, para

estruturas com um ou mais nés com deslocamentos lineares.
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