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Resumo: O processo numérico de Cross, famoso e amplamente utilizado até o fim dos anos setenta, 

aproximadamente, nos cálculos de projetos estruturais, pela sua simplicidade, do ponto de vista matemático, 

tomando-se em conta a dificuldade que representava a resolução de sistemas de equações, ainda é ensinado nas 

disciplinas de Teoria das Estruturas na maioria das universidades do país, sendo a justificativa para tal prática, 

segundo Martha (2010), mesmo com a pouca utilidade do processo na atual fase da engenharia, é o forte apelo 

didático que ele possui no ensino do comportamento de estruturas reticuladas planas submetidas a flexão. Este 

trabalho apresenta uma outra alternativa de resolução do processo de Cross através de um tratamento matricial de 

suas etapas de resolução, possibilitando ainda a sua automatização do cálculo dos esforços em vigas e pórticos 

planos quando submetidos a ações externas, sendo facilmente generalizada para outros tipos de ações. A 

formulação matricial de todas as etapas do processo é exposta e analisada posteriormente, dando a possibilidade 

da elaboração de um algoritmo para um programa de computador que faça a automatização das iterações. São 

apresentados exemplos de estruturas cujos resultados são comparados com os resultados obtidos da forma 

tradicional de resolução pelo Método dos Deslocamentos. 

Palavras-chave: Cross, Análise matricial, Processo iterativo.  

 

Resumen: El proceso numérico de Cross, famoso y muy utilizado hasta finales de los años setenta, 

aproximadamente, en los cálculos de proyectos estructurales, debido a su simplicidad, desde el punto de vista 

matemático, teniendo en cuenta la dificultad que representaba en la resolución de sistemas de ecuaciones, aún se 

imparte en las materias de Teoría de Estructuras en la mayoría de las universidades del país, y la justificación para 

esta práctica, según Martha (2010), aún con la poca utilidad del proceso en la actual fase de la ingeniería, es la 

fuerte didáctica atractivo que tiene en la enseñanza del comportamiento de estructuras reticulares planas sometidas 

a flexión. Este trabajo presenta otra alternativa para la resolución del proceso Cross a través de un tratamiento 

matricial de sus etapas de resolución, permitiendo además automatizar el cálculo de esfuerzos en vigas y pórticos 

planos al ser sometidos a acciones externas, siendo fácilmente generalizada para otro tipo de acciones. La 

formulación matricial de todas las etapas del proceso es expuesta y analizada posteriormente, dando la posibilidad 

de la elaboración de un algoritmo para un programa de computador que haga la automatización de las iteraciones. 

Son presentados ejemplos de estructuras cuyos resultados son comparados con los resultados obtenidos de la forma 

tradicional de resolución mediante el Método del Desplazamiento. 

Palabras clave: Cross, Análisis matricial, Proceso iterativo. 
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Introdução 

 

A forma como as estruturas se comportam quando submetidas a ações é de fundamental 

importância para o engenheiro civil, principalmente na fase de concepção de um projeto 

estrutural, em que são predefinidas as posições de elementos estruturais como pilares e vigas. 

A avaliação das posições desses elementos em um projeto de estruturas é baseada no julgamento 

do projetista, que leva em conta todo seu conhecimento de teoria das estruturas para estimar e 

ponderar as necessidades e viabilidades desses elementos no projeto antes da fase de análise 

estrutural. 

A análise estrutural, segundo Martha (2010), é a fase do projeto em que é feita a 

idealização do comportamento da estrutura. De forma geral, o objetivo da análise estrutural é 

determinar esforços internos e externos (solicitações e reações de apoio), e as suas 

correspondentes tensões, bem como os deslocamentos e correspondentes deformações da 

estrutura que está sendo projetada. Essa análise deve ser feita para os possíveis estágios de 

carregamentos e solicitações que devem ser previamente determinados. 

A programação auxilia o engenheiro a desenvolver a capacidade de resolver grandes 

problemas dividindo-os em outros de menor complexidade e estruturando procedimentos e 

rotinas para a solução destes. Essa contribuição por si só possui enorme relevância na 

otimização do tempo gasto em cálculos e raciocínios aplicados à engenharia, porém a 

automatização desses cálculos traz ao engenheiro a possibilidade de resolver problemas 

praticamente insolúveis manualmente. 

A tecnologia proporciona o uso de computadores para cálculos, que os analistas 

estruturais utilizam para facilitar e melhorar o processo de análise de estruturas de forma 

produtiva e segura. O objetivo da análise matricial de estruturas é de automatizar os 

procedimentos de cálculo dos dois grandes métodos da Teoria das Estruturas: o Métodos dos 
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Esforços1 e o Método dos Deslocamentos2, para auxiliar na fase de projeto correspondente à 

análise estrutural. 

Segundo Lopes et al. (2005) em publicação ao Congresso Brasileiro de Educação em 

Engenharia - COBENGE, na década de 1960, com o surgimento de computadores e 

automatização de cálculos, o Método dos Deslocamentos, por meio de enfoque matricial, foi 

tomado como o mais eficiente, em termos de implementação computacional, em relação aos 

outros da época. Os demais métodos e técnicas tradicionais utilizados até então, como o 

Processo de Cross, foram suplantados por serem considerados pouco produtivos em termos de 

programação. Infelizmente esta eficiência computacional não contribuiu da forma esperada 

para o entendimento dos conceitos da Teoria das Estruturas por parte dos alunos de graduação 

em Engenharia. 

A análise matricial do Método da Rigidez (MOREIRA, 1977) proporciona boa adaptação 

à linguagem de computador, pois salta partes fatídicas de cálculo através da automatização da 

resolução de sistemas lineares. Contudo essa boa adaptação não apresenta para o usuário, no 

caso estudantes de cursos de engenharia, uma visualização e entendimento do comportamento 

gradual da estrutura quando submetida a carregamentos. 

A falta de conhecimento e sensibilidade desse comportamento da estrutura quando 

submetida a carregamentos acarreta uma série de dificuldades para o engenheiro, que necessita 

de tais conhecimentos para boa compreensão de muitos conceitos e critérios relativos à boa 

elaboração de projetos estruturais. 

Essa problemática levanta a questão que a instrução dos programas introduzidos nos 

cursos de análise estrutural é geralmente limitada apenas à determinação de respostas finais 

(FERRO, 2001). Isso faz com que alguns detalhes sobre a análise passem despercebidos, 

fazendo do programa uma verdadeira “caixa preta” que o aluno não compreende corretamente 

o funcionamento e obtenção dos resultados (O’NEILL et al., 1995 apud LOPES et al., 2005). 

                                                           
1 Método dos Esforços, das Forças ou da Flexibilidade é o grande método da hiperestática que utiliza a matriz de 

flexibilidade para o cálculo dos esforços de uma estrutura (SÜSSEKIND, 1993). 
2 Método dos Deslocamentos, também conhecido como Método da Rigidez, do Equilíbrio ou das Deformações, é 

o segundo grande método da Teoria das Estruturas que utiliza a matriz de rigidez para o cálculo dos deslocamentos 

nodais de uma estrutura (SÜSSEKIND, 1991). 
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Uma das principais características do Processo de Cross no ensino da Teoria das 

Estruturas, nos dias de hoje, é proporcionar ao aluno de engenharia uma alternativa didática e 

intuitiva de visualizar o comportamento das estruturas em relação às ações atuantes, aos seus 

vínculos, à rigidez e posição de cada um dos seus elementos. 

Com base neste e nos argumentos anteriores, o presente trabalho propõe o tratamento 

matricial, com vias a sua implementação computacional, do Processo de Cross, aplicado a vigas 

e pórticos planos indeslocáveis. 

 

Metodologia 

 

Uma estrutura reticulada é constituída por membros retos (sem curvatura), cuja dimensão 

do comprimento é muito maior quando comparada com as dimensões de sua seção transversal.  

Segundo Gere e Weaver (1965), quando uma estrutura é solicitada por forças, os 

membros desta estrutura sofrem pequenas mudanças na forma (deformações) e, como 

consequência, pontos dentro da estrutura deslocam-se para novas posições. Um deslocamento 

é uma translação ou rotação em algum ponto de uma estrutura, causada pelos efeitos 

acumulados das deformações de todos os elementos. A translação refere-se à distância 

percorrida por um ponto da estrutura e uma rotação significa a ocorrência de um giro em relação 

ao posicionamento inicial. Considerando-se uma estrutura (Figura1), trabalhando sob o regime 

elástico de tensões, pode-se afirmar que o conjunto de efeitos atuantes em uma barra (Figura 2) 

da estrutura é igual à soma dos efeitos individuais de cada um deles na barra. Essa afirmação é 

dita como o princípio da superposição de efeitos e está ilustrada na Figura 3. 

Figura 1 - Estrutura Reticulada Plana. 

 

Fonte: Dos próprios autores. 
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Figura 2 – Barra biengastada jk. 

 

Fonte: Dos próprios autores. 

Figura 3 - Análise dos deslocamentos da barra jk. 

 

Fonte: Adaptado de Freitas Neto et al., 1979. 

Utilizando-se o princípio de superposição de efeitos, como se observa na Figura 2, no Nó 

j tem-se: 

Mjk=mjk+ajk.θj+bjk.θk+cjk.ρ
kj

                                             (1) 

Sendo: 

bjk=bkj=ajk.tjk                                                                       (2) 
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Logo: 

Mjk=mjk+ajk.θj+ajk.tjk.θk+cjk.ρ
kj

                                        (3) 

Sendo ajk, bjk e cjk os fatores de forma de 2a espécie. Conforme Freitas Neto et al. (1979) 

essa conclusão pode ser estendida a barras engastadas apoiadas, ou, em outras palavras, aos 

fatores de forma derivados a’jk e c’jk. Os fatores de forma são expressos da seguinte forma: 

ajk=
4EIc

L'
                                                                     (4) 

bjk=
2EIc

L'
                                                                     (5) 

a'jk=
3EIc

L'
                                                                    (6) 

cjk=
6EIc

LL'
                                                                     (7) 

c'jk=
3EIc

LL'
                                                                    (8) 

Sendo: 

E ⇾ Módulo de elasticidade longitudinal da barra. 

Ic ⇾ Momento de Inércia de comparação da estrutura. 

L ⇾ Comprimento real da barra. 

L’ ⇾ Comprimento elástico da barra. 

O comprimento elástico é definido como: 

L'=
Ic

I
L                                                                    (9) 

Sendo: 



 
Revista Mirante, Anápolis (GO), v. 18, n. 3, p. 216-237, dez. 2025. ISSN 1981-4089 

 

222 
 

I ⇾ Momento de Inércia real da barra. 

 A partir da equação (2), obtêm-se o coeficiente de transmissão (chamado também de 

fator de transposição) tjk do nó j para o nó k: 

tjk=
bkj

ajk

                                                                 (10) 

A condição para que uma estrutura seja considerada indeslocável, é que os deslocamentos 

ortogonais recíprocos sejam nulos, ou seja: 

ρ
kj

=0                                                                     (11) 

Logo a equação 3, fica: 

Mjk=mjk+ajk.θj+ajk.tjk.θk                                                     (12) 

Sendo a barra jk uma das barras ligadas ao nó j, como se mostra na Figura 1, tem-se: 

Figura 4 – Nós 1, 2, 3 e 4 adjacentes ao nó j. 

 

Fonte: Adaptado de Freitas Neto et al., 1979. 

Aplicando a equação (12) no nó j, tem-se: 

Mj1=mj1+aj1.θj+aj1.tj1.θ1                                                        (13) 

Mj2=mj2+aj2.θj+aj2.tj2.θ2                                                         (14) 

Mj3=mj3+aj3.θj+aj3.tj3.θ3                                                        (15) 

Mj4=mj4+aj4.θj+aj4.tj4.θ4                                                        (16) 
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A condição de equilíbrio do nó j é dada por: 

Mj1+Mj2+Mj3+Mj4=0                                                              (17) 

Logo: 

∑mjk

4

k=1

+θj.∑ ajk

4

k=1

+∑ ajk.tjk.θk

4

k=1

=0                                                 (18) 

Na primeira aproximação admite-se que as rotações dos nós k sejam consideradas nulas. 

O que equivale a dizer que: 

θ1=θ2=θ3=θ4=0                                                                     (19) 

Com tais considerações a equação (18) pode ser reescrita como: 

∑mjk

4

k=1

+∑ ajk.θj

4

k=1

=0                                                              (20) 

θj=-
∑ mjk

4
k=1

∑ ajk.θj
4
k=1

                                                                        (21) 

O numerador da equação (21) é chamado de momento de fixação do nó j, escrito de forma 

simplificada como: 

mj=∑mjk

4

k=1

                                                                       (22) 

Desta forma, os momentos iniciais do nó j ficam sendo: 

Mj1
0 =mj1-aj1.

mj

∑ ajk
4
k=1

                                                         (23) 

Mj2
0 =mj2-aj2.

mj

∑ ajk
4
k=1

                                                         (24) 

Mj3
0 =mj3-aj3.

mj

∑ ajk
4
k=1

                                                         (25) 

Mj4
0 =mj4-aj4.

mj

∑ ajk
4
k=1

                                                         (26) 

É definido como coeficiente de distribuição do nó j na barra jk a seguinte expressão: 
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djk=
ajk

∑ ajk
4
k=1

                                                                    (27) 

Sendo que: 

∑ djk

4

k=1

=1                                                                            (28) 

Finalmente, os momentos iniciais resultam: 

Mj1
0 =mj1-dj1.mj                                                                  (29) 

Mj2
0 =mj2-dj2.mj                                                                  (30) 

Mj3
0 =mj3-dj3.mj                                                                  (31) 

Mj4
0 =mj4-dj4.mj                                                                  (32) 

Nos outros nós da estrutura repete-se o mesmo procedimento encontrando assim uma 

solução inicial para os momentos fletores nas extremidades de todas as barras, na primeira 

aproximação. 

Voltando ao nó j, os momentos iniciais nas extremidades k, isto é, M0
1j, M

0
2j, M

0
3j, M

0
4j, 

serão transmitidos para o nó j através dos coeficientes de transmissão tkj conforme a Figura 5 

(FREITAS NETO et al., 1979). 

Figura 5 – Transmissão dos nós k para o nó j. 

 

Fonte: Adaptado de Freitas Neto et al., 1979. 

 

No nó j o momento resultante será: 



 
Revista Mirante, Anápolis (GO), v. 18, n. 3, p. 216-237, dez. 2025. ISSN 1981-4089 

 

225 
 

mj
0=M1j

0 .t1j+M2j
0 .t2j+M3j

0 .t3j+M4j
0 .t4j                                                   (33) 

Sendo m0
j o momento de fixação da primeira aproximação. 

A situação anterior se repete e, por um raciocínio idêntico ao que foi feito, ocorrerá uma 

distribuição deste momento m0
j para as extremidades das barras que concorrem no nó j, através 

dos coeficientes de distribuição djk. 

Aplicando-se a superposição de efeitos, obtém-se uma segunda aproximação de 

momentos no nó j, os quais ficam da seguinte forma: 

Mj1
1 =Mj1

0 +M1j
0 .t1j-mj

0.dj1                                                                 (34) 

Mj2
1 =Mj2

0 +M2j
0 .t2j-mj

0.dj2                                                                 (35) 

Mj3
1 =Mj3

0 +M3j
0 .t3j-mj

0.dj3                                                                 (36) 

Mj4
1 =Mj4

0 +M4j
0 .t4j-mj

0.dj4                                                                 (37) 

Realizando-se o mesmo procedimento para os outros nós, obtêm-se os momentos M1
1j, 

M1
2j, M

1
3j, M

1
4j, os quais serão novamente transmitidos para o nó j. Continuando com o 

procedimento, obtêm-se novos valores para M2
1j, M

2
2j, M

2
3j, M

2
4j de forma iterativa, até que se 

consiga a aproximação desejada n, para os valores Mn
1j, M

n
2j, M

n
3j, M

n
4j. 

 

Tratamento matricial do processo de Cross 

 

A análise matricial do Processo de Cross aplicado a estruturas apenas com 

deslocabilidade interna ou rotacional (Figura 6) é realizada segundo a proposta apresentada por 

Freitas Neto et al. (1979). No Processo de Cross, procura-se obter os momentos incógnitos nas 

extremidades das barras. Para isto é necessário adotar um sistema de coordenadas para 

determinar de forma ordenada e unívoca a posição e sentido desses momentos, os quais, no 

presente trabalho, são considerados como positivos no sentido anti-horário, conforme se indica 

na Figura 7. 
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Figura 6 - Exemplo de estrutura indeslocável.  

 

Fonte: Dos próprios autores. 

Figura 7 - Sistema de Coordenadas para a estrutura da Figura 6. 

 

Fonte: Dos próprios autores. 

Matriz de distribuição 

A matriz de distribuição [D] é composta pelos coeficientes de distribuição djk,, a sua 

função é distribuir os momentos de fixação dos nós nas suas barras adjacentes, procurando o 

equilíbrio dos mesmos. A formulação dessa matriz é análoga à formulação da tradicional matriz 

de incidência (MOREIRA, 1977). Para o caso da estrutura da Figura 7 fica: 



 
Revista Mirante, Anápolis (GO), v. 18, n. 3, p. 216-237, dez. 2025. ISSN 1981-4089 

 

227 
 

[D]= 

[
 
 
 
 
 
 
0 0 0 0 0 0 0

0 -dBA -dBA -dBA 0 0 0

0 -dBC -dBC -dBC 0 0 0

0 -dBD -dBD -dBD 0 0 0

0 0 0 0 -dDB -dDB 0

0 0 0 0 -dDE -dDE 0

0 0 0 0 0 0 0]
 
 
 
 
 
 

 

Matriz de transmissão 

A matriz de transmissão [T], chamada também de matriz de transporte ou transposição, 

é composta pelos coeficientes de transmissão tjk que tem como função, propagar aos nós das 

extremidades opostas das barras, os efeitos dos momentos distribuídos pela matriz de 

distribuição [D] (FREITAS NETO et al., 1979). No caso da estrutura da Figura 7, tem-se: 

[T]= 

[
 
 
 
 
 
 

0 tBA 0 0 0 0 0

tAB 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 tBD 0 0

0 0 0 tBD 0 0 0

0 0 0 0 0 0 tED

0 0 0 0 0 tDE 0 ]
 
 
 
 
 
 

 

Vetor dos momentos de engastamento perfeito 

O vetor {Mₒ} é o vetor constituído pelos Momentos de Engastamento Perfeito da 

estrutura, de acordo com Freitas Neto et al. (1979). Esses momentos também são chamados de 

Fatores de Carga de 2a Espécie ou fatores de rigidez. Para o caso da Figura 7, esse vetor é: 

{Mₒ}= 

{
  
 

  
 

mAB

mBA

m'
BC

mBD

mDB

mDE

mED}
  
 

  
 

 

Mecanismo de iteração do processo de Cross em estruturas com deslocabilidade 

exclusivamente rotacional 
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O desenvolvimento do processo iterativo será feito exatamente como preconiza Cross 

(1930). 

1) Estando, inicialmente, todos os nós bloqueados, os momentos serão: 

{Mₒ} 

2) Libertando simultaneamente todos os nós, surgem os momentos equilibrantes: 

{M1}=[D]{Mₒ} 

3) Transmitindo os efeitos para as extremidades opostas, tem-se: 

{M2}=[T]{M1}=[T][D]{Mₒ} 

4) Distribuindo novamente, resulta: 

{M3}=[D]{M2}=[D][T][D]{Mₒ} 

5) Transmitindo mais uma vez: 

{M4}=[T]{M3}=[T][D][T][D]{Mₒ} 

6) Prosseguindo com a distribuição, tem-se: 

{M5}=[D]{M4}=[D][T][D][T][D]{Mₒ} 

E assim segue sucessivamente, distribuindo os momentos com índices ímpares e 

transmitindo os momentos com índices pares. Efetuando-se a somatória desses momentos 

(FREITAS NETO et al., 1979), para obter-se os momentos finais {M}, resulta: 

{M}=∑{Mi}={Mₒ}+[D]{Mₒ}+[T][D]{Mₒ}+[D][T][D]{Mₒ}+[T][D][T][D]{Mₒ}…

∞

i=0

 

Considerando-se o produto matricial [T][D]=[Q], e a Matriz Identidade de [I], obtêm-se: 

{M}=([I]+[D])([I]+[Q]+[Q]2+[Q]3+…+[Q]
n){Mₒ}                                                  (38) 

Na da equação (38), a matriz [Q] tem seus valores menores que a unidade e o segundo 

terno entre parênteses, constitui uma série geométrica de matrizes cuja razão [Q] tem seus 

elementos menores que a unidade, o que justifica a convergência do Processo de Cross segundo 
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Freitas Neto et al. (1979) e Moreira (1977). Ainda, segundo West (1980), devido a essa 

convergência que apresenta o processo de distribuição de momentos, a equação (38) converge 

a uma solução exata dos momentos finais, dada por:  

{M}=([I]+[D])([I]-[Q])-1{Mₒ}                                                                 (39) 

O que monstra que a série geométrica de matrizes da equação (38) pode ser obtida através 

da inversão da matriz da diferença entre [I] e [Q]. 

Resultados e discussão 

Exemplo 1: Viga contínua submetida a carga externa. 

Figura 8 – Viga contínua. 

 

Fonte: Dos próprios autores. 

A viga mostrada na Figura 8, resolvida pelo Método dos Deslocamentos em Calderón et 

al., (2011), apresenta resultados dos momentos finais nos nós C e D (Expressão 40), os quais 

permitem o traçado do seu diagrama do momento fletor, mostrado na Figura 9. 

{M}={

𝑀𝐶𝐵

𝑀𝐶𝐷

𝑀𝐷𝐶

𝑀𝐷𝐸

} =   {

−40,28
40,28
−18,70
18,70

}                                                               (40) 
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Figura 9 – Diagrama do momento fletor da viga da contínua. 

 

Fonte: Dos próprios autores. 

 

Para resolver estrutura da Figura 8 pelo Processo de Cross de forma matricial é utilizado 

o sistema de coordenadas indicado na Figura 10. 

 

Figura 10 – Sistema de coordenadas da viga da contínua. 

 

Fonte: Dos próprios autores. 

 

a) Matriz de Distribuição 

[D]= [

−0,360 −0,360 0          0
−0,640 −0,640 0          0
0
0

0
0

−0,690
−0,310

−0,690
−0,310

] 

Obtenção dos principais termos da Matriz [D]: 

d11=d12=

3
4⁄

3
4⁄ + 4

3⁄
=0,360 
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d22=d21=

4
3⁄

3
4⁄ + 4

3⁄
=0,640 

d33=d34=

4
3⁄

4
3⁄ + 3

5⁄
=0,690 

d44=d34=

3
5⁄

4
3⁄ + 3

5⁄
=0,310 

 

b) Matriz de Transmissão 

[T]= [

0 0 0 0
0 0 0,5 0
0
0

0,5
0

0 0
0 0

] 

 

Obtenção dos principais termos da Matriz [T]: 

t23=

2
3⁄

4
3⁄

=0,500 

t32=

2
3⁄

4
3⁄

=0,500 

 

 

c) Vetor dos Momentos de Engastamento Perfeito 

{Mₒ}= {

𝑚1

𝑚2
𝑚3

𝑚4

}={

−52,50
26,67
−13,33
26,00

} 

Obtenção dos termos do vetor {Mₒ}: 

m1=−
15∙62

12
+
1

2
(2∙0-3)=− 52,50 kNm 

m2=
3∙2∙4

2

62
=26,67 kNm 

m3=−
3∙22 ∙ 4

6
2

=− 13,33 kNm 
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m4=
(−10)

2
(

3∙2
2

52
-1) =26,00 kNm 

d) Produto Matricial [T][D] = [Q] 

[Q]= [

0 0 0            0
0 0 −0,345 −0,345

−0,320
0

−0,320
0

0             0
0             0

] 

e) Matriz Identidade 

[I]= [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] 

f) Momentos Finais 

{M}=([I]+[D])([I]+[Q]+[Q]2+[Q]3+[Q]4+[Q]
5){Mₒ}                                  (41) 

Aplicando-se a equação (38) e realizando-se as potenciações da matriz [Q] até a quinta 

potência, para uma aproximação de duas casas decimais, tem-se: 

{M}={

𝑀𝐶𝐵

𝑀𝐶𝐷

𝑀𝐷𝐶

𝑀𝐷𝐸

} =   {

−40,28
40,28
−18,71
18,71

}                                                               (42) 

Ainda segundo West (1980) pode-se evitar a potenciação da matriz [Q], utilizando a 

equação (39), obtendo-se os seguintes momentos finais: 

{M}=([I]+[D])([I]-[Q])-1{Mₒ}={

𝑀𝐶𝐵

𝑀𝐶𝐷

𝑀𝐷𝐶

𝑀𝐷𝐸

} =   {

−40,28
40,28
−18,70
18,70

}                         (43) 

Como está técnica não utiliza diretamente as iterações, foge ao objetivo principal desse 

trabalho, mas é válida e demonstra de forma matricial o Processo de Cross, podendo ser 

utilizada apenas para demonstração e conferência dos resultados obtidos, comprovando-se 

assim, a validade e precisão do mecanismo do Processo de Cross formulado. 

Exemplo 2: Pórtico indeslocável submetido a carga externa. 
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Figura 11 – Pórtico indeslocável. 

 

Fonte: Dos próprios autores. 

 

O pórtico mostrado na Figura 11, resolvida pelo Método dos Deslocamentos em Calderón 

et al., (2011), apresenta resultados dos momentos finais nos nós D e E (Expressão 44), os quais 

permitem o traçado do seu diagrama do momento fletor, mostrado abaixo. 

{M}=

{
 
 

 
 
𝑀𝐴𝐷
𝑀𝐷𝐴

𝑀𝐷𝐵

𝑀𝐷𝐸

𝑀𝐸𝐷

𝑀𝐸𝐶}
 
 

 
 

=  

{
 
 

 
 
45,33
−34,35
−0,02
34,37
−29,30
29,30 }

 
 

 
 

                                                     

 

 

g) Matriz de Distribuição 

 

Obtenção dos principais termos da Matriz [D]: 

d22=d23=d24=

4
5⁄

4
5⁄ + 2

3⁄ + 3
4⁄

=0,361 
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d44 = d42=d43=

2
3⁄

4
5⁄ + 2

3⁄ + 3
4⁄

=0,301 

d33 = d32 = d34=1-(0,361+0,301)=0,338 

d55 = d56=

2
3⁄

2
3⁄ + 3

4⁄
=0,471 

d66=d65=1-(0,471)=0,529 

h) Matriz de Transmissão 

 

Obtenção dos principais termos da Matriz [T]: 

t21=t12=

2
5⁄

4
5⁄

=0,500 

t45=t54=

1
3⁄

2
3⁄

=0,500 

i) Vetor dos Momentos de Engastamento Perfeito 

{Mₒ}=

{
 
 

 
 
𝑚1

𝑚2
𝑚3

𝑚4
𝑚5

𝑚6}
 
 

 
 

 =

{
 
 

 
 
41,67
−41,67
−6,88
35,56
−17,78
45,70 }

 
 

 
 

 

Obtenção dos principais termos do vetor {Mₒ}: 

m1=
20.52

12
=41,67 kNm 

m2=−
20.52

12
=− 41,67 kNm 

m3=
(−80)

2
(
3 ∙ 2,52

42
− 1)= − 6,88 kNm 
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m4=
40∙2∙4

2

6
2

=35,56 kNm 

m5=−
40∙2

2 ∙ 4

6
2

= − 17,78 kNm 

m6=
60∙1,5∙2,5

2∙42
(2,5 + 4)=45,70 kNm 

 

j) Produto Matricial [T][D] = [Q] 

 

Matriz Identidade 

[I]= 

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1]

 
 
 
 
 

 

 

Os momentos finais são obtidos aplicando-se a equação (38) realizando-se as 

potenciações da matriz [Q], para uma aproximação de duas casas decimais, até [Q]5, resultando: 

{M}=

{
 
 

 
 
𝑀𝐴𝐷
𝑀𝐷𝐴

𝑀𝐷𝐵

𝑀𝐷𝐸

𝑀𝐸𝐷

𝑀𝐸𝐶}
 
 

 
 

=  

{
  
 

  
 

+3,00

-6,49

-2,17

+8,67

-6,74

+6,74

+0,01}
  
 

  
 

 

Segundo West (1980), aplicando-se a equação (40), obtêm-se: 
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{M}==([I]+[D])([I]-[Q])-1{Mₒ}

{
 
 

 
 
𝑀𝐴𝐷
𝑀𝐷𝐴

𝑀𝐷𝐵

𝑀𝐷𝐸

𝑀𝐸𝐷

𝑀𝐸𝐶}
 
 

 
 

=  

{
  
 

  
 

+3,00

-6,49

-2,17

+8,67

-6,74

+6,74

+0,01}
  
 

  
 

 

Cujos resultados, utilizando-se dois dígitos após a vírgula, são praticamente iguais, o que 

comprova a validade e a precisão do mecanismo do Processo de Cross formulado. 

 

Conclusões 

 

A partir das comparações feitas, pode-se concluir que o tratamento matricial do Processo 

de Cross é uma alternativa metodológica eficiente para o cálculo de estruturas reticulares planas 

indeslocáveis, uma vez que os momentos resultantes obtidos dessa forma convergem para os 

valores exatos. A convergência para valores exatos, também pode ser provada, a partir da série 

de geométrica formada pelas matrizes (Equação 38), resultantes das iterações inerentes do 

processo de Cross. 

Pode-se observar que o tratamento matricial do Processo de Cross, pela simplicidade do 

processo, torna possível a sua implementação computacional, permitindo a consideração de 

outros tipos de ações, devido a que o Método dos Deslocamentos é bastante adequado para este 

fim, para tais casos, seria necessário mudar apenas o vetor correspondente ás ações {Mo}, 

ficando os demais cálculos inalterados. A implementação do tratamento matricial do Processo 

de Cross também pode ser facilmente estendida para estruturas deslocáveis, isto é, para 

estruturas com um ou mais nós com deslocamentos lineares.  
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