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Resumo: Os vários tipos de problemas que surgem no estudo da Física, Engenharia e outras áreas, 

envolvem equações compostas por funções e derivadas dessas funções, chamadas de equações 

diferenciais, as quais são ainda objeto de estudo por um ramo das matemáticas, devido ao grande número 

de aplicações que dependem da sua resolução. Embora já existam métodos para resolver essas equações, 

seja de forma analítica ou numérica, as Transformadas de Laplace, podem representar uma alternativa 

de resolução dessas equações. Na Engenharia Civil, no caso de estruturas compostas por peças 

estruturais lineares, as deflexões das mesmas são governadas por equações diferenciais ordinárias de 4ª 

ordem, podendo-se então, utilizar as Transformadas de Laplace para determinar as equações das linhas 

elásticas dessas peças estruturais e assim poder calcular os deslocamentos ao longo de toda a estrutura. 

As Transformadas de Laplace, além de ter muitas outras aplicações, são bastante apropriadas para 

resolver equações diferenciais, fazendo com que elas se tornem simples equações algébricas, facilitando 

assim, a sua resolução. Para demostrar a eficiência da aplicação das Transformadas de Laplace, 

exemplos são realizados e comparados com os obtidos da forma tradicional. 

Palavras-chave: Deformação. Equações diferenciais. Transformadas de Laplace. Vigas.  

 

Resumen: Los diversos tipos de problemas que surgen en el estudio de Física, Ingeniería y otras areas, 

involucran ecuaciones compuestas por funciones y sus derivadas, llamadas ecuaciones diferenciales, las 

cuales son aún objeto de estudio en una rama de las matemáticas, debido a la gran cantidad de 

aplicaciones que dependen de su resolución. Si bien ya existen métodos para resolver estas ecuaciones, 

ya sea em su forma analítica o numérica, las Transformadas de Laplace pueden representar una 

alternativa para la resolución de esas ecuaciones. En Ingeniería Civil, en el caso de estructuras 

compuestas por elementos estructurales lineales, sus deflexiones se rigen por ecuaciones diferenciales 

ordinarias de cuarta orden. Las Transformadas de Laplace pueden utilizarse para determinar las 

ecuaciones de las líneas elásticas de eses elementos estructurales y, por lo tanto, calcular los 

desplazamientos a lo largo de la estructura. Las Transformadas de Laplace, además de tener muchas 

otras aplicaciones, son muy adecuadas para resolver ecuaciones diferenciales, transformándolas en 

ecuaciones algebraicas simples, lo que facilita su resolución. Para demostrar la eficiencia de la 

aplicación de las Transformadas de Laplace, ejemplos son realizados y comparados con los obtenidos 

de forma tradicional. 

Palabras clave: Deformación. Equaciones diferenciales. Transformadas de Laplace. Vigas. 
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Introdução 

 

 A Matemá tica teve grandes avanços nos séculos 17 e 18, quando surgiram 

personagens importantes cujos trabalhos contribuiram para o estudo das ciências em todos 

os âmbitos, como os trabalhos de René Descartes (1596-1650) e Pierre de Fermat (1601-

1665), que uniram a Álgebra e Geometria num mesmo ambiente formando a Geometria 

Analítica (Boyer, 2012), e os trabalhos de Isaac Newton (1643-1727) e Gottfried Wilhelm 

Leibniz (1646-1716), considerados como os criadores do Cálculo Diferencial e a sua 

relação com o Cálculo Integral (ANTON, et al., 2012), permitindo assim, o estudo de 

fenômenos inerentes às ciências exatas e da natureza, biomédicas ou sociais aplicadas, tendo 

ainda presença quase indispensável no âmbito das áreas que se ocupam predominantemente da 

geração de tecnologias. E assim, logo que surgiram as Equações Diferenciais Ordinárias, 

ocupando o seu lugar de importância nas pesquisas matemáticas, já que elas permitem 

modelar os fenômenos da natureza e entender as suas funções, os seus comportamentos e 

até dar a possibilidade de fazer previsões dos mesmos, fornecendo assim, valiosas 

informações. 

 Um matemático, astrônomo e estatístico francês dessa época, autor de vários 

trabalhos importantes, foi Pierre-Simon, Marquês de Laplace (1749-1847), quem utilizou 

Equações Diferenciais em suas pesquisas sobre o movimento dos planetas ao redor de uma 

estrela, assim como outros fenômenos vistos no Universo. As suas principais contribuições 

na matemática foram: a Equação de Laplace para potenciais elétricos e mecânicos, o 

Operador Diferencial Laplaciano e a Transformada de Laplace. Sendo esta última, 

justamente utilizada para facilitar a resolução de problemas envolvendo Equações 

Diferenciais Ordinárias. Desde e s s a  é p o c a  até os dias atuais, a sua transformada tem 

se mostrado uma poderosa ferramenta na solução de Equações Diferenciais não só na 

Matemática, mas também em outros campos da ciência, como a Física, a Engenharia e 

outros. 

 Neste trabalho, é utilizada a Transformada de Laplace (SPIEGEL, 1971) para 

resolver a Equação Diferencial da Linha Elástica de uma viga, como uma alternativa para 

resolução de Equações Diferenciais Ordinárias (ZILL, 2001), visto que a resolução por outros 
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métodos como a da variação dos parâmetros, utilizando séries ou resolvendo-se 

numericamente, seria bastante trabalhosa. Para isso, é necessário, inicialmente, determinar 

a equação Diferencial da Linha Elástica de uma viga submetida a um carregamento e 

realizar o estudo da Transformada de Laplace. 

 

Equação diferencial da linha elástica de uma viga 

  

Sabe-se que as flechas e declividades ao longo de uma viga que suporta uma carga w(x) 

(Figura 1 a), podem ser obtidas a partir da equação da sua linha elástica, representada por uma 

equação diferencial de segunda ordem (HIBBELER, 2019): 

𝑑2𝑦

𝑑𝑥2
=

𝑀(𝑥)

𝐸𝐼
                                                                                                                      (1) 

Onde:  

M (x) - momento fletor 

E - módulo de elasticidade transversal 

I - momento de inércia da área da seção transversal 

 
Figura 1- a) Viga com carga distribuída w(x) contínua; b) Elemento diferencial da viga. Fonte: Autores.  

  

Considerando-se em equilíbrio o elemento diferencial x da viga (Figura 1, b), o qual 

está submetido a uma carga distribuída contínua w(x), podem ser obtidas as relações 
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diferenciais que existem entre a carga w(x), a força cortante V(x) e o momento fletor M(x), 

(BEER et al., 2021), que são: 

𝑑𝑉(𝑥)

𝑑𝑥
= −𝑤(𝑥)                                                                                                                 (2) 

𝑑𝑀(𝑥)

𝑑𝑥
= 𝑉(𝑥)                                                                                                                    (3) 

 Diferenciando-se ambos os membros da equação (1) em relação a x e considerando que 

o produto EI seja constante, tem-se: 

𝑑3𝑦

𝑑𝑥3
=

1

𝐸𝐼

𝑑𝑀(𝑥)

𝑑𝑥
=

𝑉(𝑥)

𝐸𝐼
                                                                                                 (4) 

 Diferenciando-se ambos os membros da equação (4), obtêm-se: 

𝑑4𝑦

𝑑𝑥4
=

1

𝐸𝐼

𝑑𝑉(𝑥)

𝑑𝑥
                                                                                                                 (5) 

 Substituindo-se a equação (2) na equação (5), tem-se: 

𝑑4𝑦

𝑑𝑥4
= −

𝑤(𝑥)

𝐸𝐼
                                                                                                                     (6) 

 A equação (6) é uma Equação Diferencial Ordinária de quarta ordem (BRONSON e 

COSTA, 2008), chamada de Equação Diferencial da Linha Elástica de uma viga submetida a 

uma carga distribuída w(x), a qual pode ser resolvida utilizando-se as Transformadas de 

Laplace, objetivo do presente trabalho. A equação (1) é normalmente utilizada pelos métodos 

tradicionais, como é o método da integração direta, que consiste em realizar duas integrações 

consecutivas, gerando assim duas constantes por cada trecho da viga, as quais são determinadas 

a partir da aplicação das condições de contorno da viga em questão. Alguns exemplos (NASH, 

1982 e NASH, 2001), utilizados para comparar com os resultados obtidos pela aplicação das 

transformadas de Laplace, são os seguintes: 

Exemplo 1: Viga engastada com carga distribuída parcial. 
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Figura 2 – Viga engastada com carga distribuída parcial. . Fonte: Autores. 

𝑇𝑟𝑒𝑐ℎ𝑜 𝐴𝐶 → 𝑦(𝑥) =
𝑤0

24𝐸𝐼
(4𝑎𝑥³ − 6𝑎²𝑥2 − 𝑥4)                                                         (7) 

𝑇𝑟𝑒𝑐ℎ𝑜 𝐶𝐵 → 𝑦(𝑥) =
𝑤0

24𝐸𝐼
(−4𝑎³𝑥 + 𝑎4)                                                                      (8) 

Exemplo 2: Viga biapoiada com carga concentrada. 

 

Figura 3 – Viga biapoiada com carga concentrada. Fonte: Autores. 

𝑇𝑟𝑒𝑐ℎ𝑜 𝐴𝐶 → 𝑦(𝑥) =
𝑃

6𝐸𝐼𝐿
(𝑏𝑥3 − 𝑏(𝐿2 − 𝑏2)𝑥)                                                           (9) 

𝑇𝑟𝑒𝑐ℎ𝑜 𝐶𝐵 → 𝑦(𝑥) =
𝑃

6𝐸𝐼𝐿
(𝑏𝑥3 − 𝐿(𝑥 − 𝑎)3 − 𝑏(𝐿2 − 𝑏2)𝑥)                                (10) 

Exemplo 3: Viga em balanço com carga linearmente distribuída. 

 

Figura 4 – Viga em balanço com carga linearmente distribuída. Fonte: Autores. 
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𝑇𝑟𝑒𝑐ℎ𝑜 𝐴𝐵 → 𝑦(𝑥) = −
𝑤0

120𝐸𝐼𝐿
(𝑥5 − 5𝐿4𝑥 + 4𝐿5)                                               (11) 

Exemplo 4: Viga biapoiada com carga momento. 

 

Figura 5 – Viga biapoiada com carga momento. Fonte: Autores. 

𝑇𝑟𝑒𝑐ℎ𝑜 𝐴𝐶 → 𝑦(𝑥) =
𝑀0

6𝐸𝐼𝐿
(𝑥3 + 2𝐿2𝑥 − 6𝐿𝑎𝑥 + 3𝑎2𝑥)                                     (12) 

𝑇𝑟𝑒𝑐ℎ𝑜 𝐴𝐶 → 𝑦(𝑥) =
𝑀0

6𝐸𝐼𝐿
(𝑥3 − 3𝐿𝑥2 + 2𝐿2𝑥 + 3𝑎2𝑥 − 3𝐿𝑎2)                       (13) 

 

A transformada de LAPLACE 

  

Seja f(t) uma função de t definida para t>0, então, a transformada de Laplace de f(t), 

representada por ℒ [f(t)], é definida por: 

ℒ[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

= 𝐹(𝑠)                                                                           (14) 

onde supoe-se que s seja um parâmetro real. A transformada de Laplace de f(t) existe se a 

integral na expressão (14) converge para algum valor de s, caso contrario, não existe. O 

símbolo ℒ  é chamado de operador de transformação de Laplace (SPIEGEL, 1971). 

 Normalmente são utilizadas letras minúsculas para denotar a função a ser 

transformada, como f(t), g(t), y(t), e letras maiúsculas, como F(s), G(s), Y(s), para denotar, 

respectivamente, suas correspondentes transformadas de Laplace. 

 A integral da expressão (14) é um tipo de integral imprópria, cujo limite existe e que, 

por definição, tem pelo menos um dos seus limites de integração ilimitado. Esse tipo de 
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integrais pode ser resolvida procedendo-se da seguinte forma: 

∫ 𝑔(𝑡)𝑑𝑡
∞

0

= lim
𝐴→∞

∫ 𝑔(𝑡)𝑑𝑡
𝐴

0

                                                                                  (15) 

onde g(t) é uma função contínua no intervalo 0≤t≤∞. 

 Por exemplo, para determinar a transformada de Laplace de uma função f(t)=t, 

aplica-se a definição dada em (14), isto é: 

ℒ[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

= 𝐹(𝑠)                                                                                  

ℒ[𝑡] = ∫ 𝑒−𝑠𝑡 𝑡 𝑑𝑡 = lim
𝑃→∞

∫ 𝑒−𝑠𝑡 𝑡 𝑑𝑡
𝑃

0

∞

0

                                                              (16) 

 Resolvendo a integral da equação (16), obtêm-se: 

ℒ[𝑡] =
1

𝑠2
                                                                                                                          (17) 

 Procedendo-se dessa forma, é possível determinar as transfomadas de Laplace de 

outras funções como as indicadas na Tabela 1 (SCHIFF, 1999), necessárias para a aplicação 

no presente trabalho, onde supõe-se que: s>0 e que n! é o fatorial de n, sendo 

n!=1x2x3x4x5x.....n. 

Tabela 1 Transformada de Laplace de algumas funções. 

 𝑓(𝑡) ℒ[𝑓(𝑡)] = 𝐹(𝑠) 

1 1 1

𝑠
 

2 t 1

𝑠2
 

3 𝑡𝑛 𝑛!

𝑠𝑛+1
 

4 𝑒𝑎𝑡 1

𝑠 − 𝑎
 

5 sin 𝑎𝑡 𝑎

𝑠2 + 𝑎2
 

6 cos 𝑎𝑡 𝑠

𝑠2 + 𝑎2
 

Fonte: Autores. 
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A transformada inversa de LAPLACE 

  

Se a Tranformada de Laplace de uma função 𝑓(𝑡) é 𝐹(𝑠), ou seja, se ℒ[𝑓(𝑡)] = 𝐹(𝑠), 

então 𝑓(𝑡) é chamada Tranformada Inversa de Laplace de 𝐹(𝑠) e é escrita simbólicamente 

como  𝑓(𝑡) = ℒ−1[𝐹(𝑠)], onde  ℒ−1 é chamado de operador da transformada inversa de 

Laplace. 

 

Teorema de Lerch 

  

Se a função 𝑓(𝑡) for restrita e seja seja seccionalmente contínua em todo intervalo finito 

0 ≤ 𝑡 ≤ 𝑁 e de ordem exponecial para 𝑡 > 𝑁, então a transformada inversa de Laplace de 𝐹(𝑠), 

isto é, ℒ−1[𝐹(𝑠)] =  𝑓(𝑡), é única. 

 A Transformada inversa de Laplace também possui a propriedade da linearidade. Se c1 

e c2 são constantes quaisquer, enquando 𝐹1(𝑠) 𝑒 𝐹2(𝑠) são as transformadas de Laplace de 

𝑓1(𝑡) 𝑒 𝑓2(𝑡), respectinamente, então: 

 ℒ−1{𝑐1𝐹1(𝑠) + 𝑐2𝐹2(𝑠)} =  𝑐1 ℒ−1{𝐹1(𝑠)} + 𝑐2 ℒ−1{𝐹2(𝑠)}                                                 

 ℒ−1{𝑐1𝐹1(𝑠) + 𝑐2𝐹2(𝑠)} =  𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡)                                                                (18) 

 As transformadas inversas de Laplace são geralmente dispostas em tabelas (SPIEGEL, 

1971), algumas delas estão apresentadas na tabela 2. 

Tabela 2 Transformada inversa de Laplace de algumas funções. 

 𝐹(𝑠) ℒ−1[𝐹(𝑠)] = 𝑓(𝑡) 

1 1

𝑠
 

1 

2 1

𝑠2
 

t 

3 1

𝑠𝑛+1
 

𝑡𝑛

𝑛!
 

4 1

𝑠 − 𝑎
 

𝑒𝑎𝑡 
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5 1

𝑠2 + 𝑎2
 

sin 𝑎𝑡

𝑎
 

6 𝑠

𝑠2 + 𝑎2
 cos 𝑎𝑡 

. Fonte: Autores. 

Algumas propriedades da transformada de Laplace 

 

1 – Propriedade de linearidade 

 Sendo c1 e c2 constantes quaisquer, f1(t) e f2(t) funções cujas transformadas de Laplace 

são F1(s) e F2(s), respectivamente, então: 

ℒ[𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡)] = 𝑐1ℒ[𝑓1(𝑡)] + 𝑐2ℒ[𝑓2(𝑡)]                                                          

ℒ[𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡)] = 𝑐1𝐹1(𝑠) + 𝑐2𝐹2(𝑠)                                                            (19) 

2 – Propriedades de translação 

a) Se  ℒ[𝑓(𝑡)] = 𝐹(𝑠) então: 

ℒ[𝑒𝑎𝑡𝑓(𝑡)] = 𝐹(𝑠 − 𝑎)                                                                                             (21) 

b) Se  ℒ[𝑓(𝑡)] = 𝐹(𝑠) e 𝑔(𝑡) = {
𝑓(𝑡 − 𝑎) 𝑡 > 𝑎

0 𝑡 < 𝑎
 então: 

ℒ[𝑔(𝑡)] = 𝑒−𝑎𝑠𝐹(𝑠)                                                                                                  (22) 

 Nas propriedades a seguir considera-se que: 

 Se ℒ[𝑓(𝑡)] = 𝐹(𝑠) então: 

3 – Propriedade de mudança de escala 

ℒ[𝑓(𝑎𝑡)] =
1

𝑎
𝐹 (

𝑠

𝑎
)                                                                                                   (23) 

4 – Transformada de Laplace de derivadas 

ℒ[𝑓′(𝑡)] = 𝑠𝐹(𝑠) − 𝑓(0)                                                                                          (24) 

ℒ[𝑓′′(𝑡)] = 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)                                                                      (25) 
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ℒ[𝑓𝑛(𝑡)] = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0) − ⋯ − 𝑠𝑓𝑛−2(0) − 𝑓𝑛−1(0)      (26) 

5 – Transformada de Laplace de integrais 

ℒ [∫ 𝑓(𝑢)𝑑𝑢
𝑡

0

] =
𝐹(𝑠)

𝑠
                                                                                             (27) 

6 – Multiplicação por tn 

ℒ[𝑡𝑛𝑓(𝑡)] = (−1)𝑛
𝑑𝑛

𝑑𝑠𝑛
𝐹(𝑠) = (−1)𝑛𝐹𝑛(𝑠)                                                       (28) 

7 – Divisão por t 

ℒ [
𝑓(𝑡)

𝑡
] = ∫ 𝑓(𝑢)𝑑𝑢

𝑡

𝑠

                                                                                              (29) 

 Sendo necessário a existência do: lim
𝑡→0

𝑓(𝑡)

𝑡
 

 

Algumas funções especiais da transformada de Laplace 

  

São necessárias a utilização de algumas funções especiais para a representação dos vários 

tipos de cargas que podem atuar em uma viga. 

1 – A função degrau unitário 

 Chamada também de função de Heaviside, representada graficamente na figura 6 

a), é definida por: 

𝑢(𝑡) = {
0 𝑡 < 0
1 𝑡 > 0

                                                                                                     (30) 

 Se houver translação na função, mostrada na figura 6 b), fica: 

𝑢(𝑡 − 𝑎) = {
0 𝑡 < 𝑎
1 𝑡 > 𝑎

                                                                                            (31) 
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Figura 6 - a) Função degrau unitário; b) Função degrau unitário com atraso t=a. Fonte: Autores. 

  

A função degrau unitário é utilizada para representar cargas uniformemente 

distribuídas e as suas transformadas de Laplace são: 

ℒ[𝑢(𝑡)] = 𝑈(𝑠) =
1

𝑠
                                                                                                  (32) 

ℒ[𝑢(𝑡 − 𝑎)] = 𝑒−𝑎𝑠𝑈(𝑠) =
1

𝑠
𝑒−𝑎𝑠                                                                         (33) 

2 – A função rampa unitária 

 A função rampa unitária, representada graficamente na figura 7 a), é definida por: 

𝑟(𝑡) = {
0   𝑡 < 0
𝑡   𝑡 > 0

                                                                                                    (34) 

 

Figura 7 - a) Função rampa unitária; b) Função rampa unitária com atraso t=a. Fonte: Autores. 

  

No caso de translação, mostrada na figura 7 b), fica: 

𝑟(𝑡 − 𝑎) = {
0    𝑡 < 𝑎

𝑡 − 𝑎    𝑡 > 𝑎
                                                                                   (35) 
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 A função rampa unitária é utilizada para representar cargas linearmente distribuídas 

e as suas transformadas de Laplace são: 

ℒ[𝑟(𝑡)] = 𝑅(𝑠) =
1

𝑠2
                                                                                               (36) 

ℒ[𝑟(𝑡 − 𝑎)] = 𝑒−𝑎𝑠𝑅(𝑠) =
1

𝑠2
𝑒−𝑎𝑠                                                                       (37) 

3 – A função impulso unitário 

 A função de impulso unitário, chamada também de função delta de Dirac, denotada 

como δ(t), é definida como: 

𝛿(𝑡) = {
     0      𝑝𝑎𝑟𝑎 𝑡 ≠ 0
→ ∞ 𝑞𝑢𝑎𝑛𝑑𝑜 𝑡 → 0

                                                                                (38) 

 Com a propriedade de que: 

∫ 𝛿(𝑡)𝑑𝑡
∞

−∞

= 1                                                                                                         (39) 

 A função impulso unitário com atraso é definida como: 

𝛿(𝑡 − 𝑎) = {
     0      𝑝𝑎𝑟𝑎 𝑡 ≠ 𝑎
→ ∞ 𝑞𝑢𝑎𝑛𝑑𝑜 𝑡 → 𝑎

                                                                        (40) 

 As funções impulso unitário com atraso e sem atraso, aproximadas no limite, são 

representadas graficamente na figura 8. 

 

Figura 8 - a) Função impulso unitário; b) Função impulso unitário com atraso t=a. Fonte: Autores. 

 A função impulso unitário é utilizada para representar cargas concentradas e as suas 

transformadas de Laplace são as seguintes: 
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ℒ[𝛿(𝑡)] = 1                                                                                                              (41) 

ℒ[𝛿(𝑡 − 𝑎)] = 𝑒−𝑎𝑠                                                                                                 (42) 

4 – A função unidade dupla 

 Chamada também de doblete unitário, representada graficamente na figura 6 a), é 

definida como derivada da função delta de Dirac, isto é: 

𝛿′(𝑡) =
𝑑

𝑑𝑡
δ(t)                                                                                                          (43) 

 As funções unidade dupla com atraso e sem atraso, aproximadas no limite, são 

representadas graficamente na figura 9. 

 

Figura 9 - a) Função unidade dupla; b) Função unidade dupla com atraso t=a. Fonte: Autores. 

  

A função unidade dupla é utilizada para representar cargas momento e as suas 

transformadas de Laplace são: 

ℒ[𝛿′(𝑡)] = 𝑠                                                                                                               (44) 

ℒ[𝛿′(𝑡 − 𝑎)] = 𝑠 𝑒−𝑎𝑠                                                                                               (45) 

 

Resultados e discussão 

 Neste item, os exemplos 1, 2, 3 e 4, apresentados ateriormente, são resolvidos 

utilizando-se as transformadas de Laplace, a partir da equação (6), com o sinal da carga 
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positiva, ou seja, adotando a coordenada y no sentido para baixo, isto é: 

𝑑4𝑦

𝑑𝑥4
=

𝑤(𝑥)

𝐸𝐼
                                                                                                                     (46) 

 As condições de contorno das vigas são determinadas de acordo com tipo de 

vinculação das suas extremidades, como se mostra na Tabela 3. 

Tabela 3 – Condições de contorno de uma viga. 

Extremidade da viga Condições de contorno 

Engastada 𝑦 = 0 (Flecha) 𝑦′ = 0 (Declividade) 

Livre 𝑦′′ = 0 (Momento) 𝑦′′′ = 0 (Cortante) 

Simplesmente apoiada 𝑦 = 0 (Flecha) 𝑦′′ = 0 (Momento) 

Fonte: Autores. 

Exemplo 1: Viga engastada com carga distribuída parcial. 

 

Figura 10 – Viga engastada com carga distribuída parcial. Fonte: Autores. 

 As condições de contorno da viga da figura 10 são: 

𝑃𝑎𝑟𝑎 𝑥 = 0 → 𝑦(0) = 0;           𝑦′(0) = 0                                                                (47) 

𝑃𝑎𝑟𝑎 𝑥 = 𝐿 → 𝑦′′(𝐿) = 0;          𝑦′′′(𝐿) = 0                                                             (48) 

 A carga w(x) obedece duas condições: 

𝑤(𝑥) = {
𝑤0      (0 < 𝑥 < 𝑎 ) 

0           (𝑥 > 𝑎)
}                                                                                      (49) 

 A carga w(x) dada pela função (49), pode ser representada pela função degrau unitário 

da seguinte forma: 
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𝑤(𝑥) = 𝑤0[𝑢(𝑥) − 𝑢(𝑥 − 𝑎)]                                                                                      (49) 

 Dessa forma, substituindo-se a equação (49) na equação (46), tem-se: 

𝑑4𝑦

𝑑𝑥4
=

𝑤0[𝑢(𝑥) − 𝑢(𝑥 − 𝑎)]

𝐸𝐼
                                                                                       (50) 

 Aplicando a Transformada de Laplace em ambos os membros da equação (51), resulta: 

ℒ {
𝑑4𝑦

𝑑𝑥4
} = ℒ {

𝑤0[𝑢(𝑥) − 𝑢(𝑥 −  𝑎)]

𝐸𝐼
}                                                                       (51) 

𝑠4𝑌(𝑠) − 𝑠3 𝑦 (0) − 𝑠2 𝑦′(0) − 𝑠 𝑦′′(0) − 𝑦′′′(0) =
𝑤0

𝐸𝐼
[
1

𝑠
−

 𝑒−𝑎𝑠

𝑠
]                    (52) 

 Aplicando as condições de contorno desta viga dadas em (47), na equação (52), tem-se: 

𝑠4𝑌(𝑠) − 𝑠 𝑦′′(0) − 𝑦′′′(0) =
𝑤0

𝐸𝐼
[
1

𝑠
−

 𝑒−𝑎𝑠

𝑠
]                                                               (53) 

 Fazendo: 𝑦′′(0) = 𝑐1 e 𝑦′′′(0) = 𝑐1 na equação (53), tem-se: 

𝑌(𝑠) =
𝑐1

𝑠³
+

𝑐2

𝑠4
+

𝑤0

𝐸𝐼
[

1

𝑠5
−

 𝑒−𝑎𝑠

𝑠5
]                                                                                    (54) 

 Aplicando a Transformada Inversa na equação (54): 

ℒ−1 {𝑌(𝑠)} = ℒ−1 {
𝑐1

𝑠³
+

𝑐2

𝑠4
+

𝑤0

𝐸𝐼
[

1

𝑠5
−

 𝑒−𝑎𝑠

𝑠5
]}                                                                      

𝑦(𝑥) = 𝑐1

𝑥2

2!
+ 𝑐2

𝑥3

3!
+

𝑤0

𝐸𝐼

𝑥4

4!
−

𝑤0

𝐸𝐼

(𝑥 − 𝑎)4

4!
𝑢(𝑥 − 𝑎)                                                       

𝑦(𝑥) = 𝑐1

𝑥²

2
+ 𝑐2

𝑥³

6
+

𝑤0

𝐸𝐼

𝑥4

24
−

𝑤0

𝐸𝐼

(𝑥 − 𝑎)4

24
𝑢(𝑥 − 𝑎)                                               (55) 

 Para aplicar as condições de contorno do ponto B da viga (figura 10), dadas em (48), no 

qual x>a, a função degrau unitário vale 1, isto é: 𝑢(𝑥 − 𝑎) = 1, logo a equação (55), fica: 

𝑦(𝑥) = 𝑐1

𝑥²

2
+ 𝑐2

𝑥³

6
+

𝑤0

𝐸𝐼

𝑥4

24
−

𝑤0

𝐸𝐼

(𝑥 − 𝑎)4

24
                                                                (56) 
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 Calculando-se as derivadas de primeira, segunda e terceira ordem da equação (56), 

obtêm-se: 

𝑦′(𝑥) = 𝑐1𝑥 + 𝑐2

𝑥2

2
+

𝑤0

𝐸𝐼

𝑥3

6
−

𝑤0

𝐸𝐼

(𝑥 − 𝑎)3

6
                                                                   (57) 

𝑦′′(𝑥) = 𝑐1 + 𝑐2𝑥 +
𝑤0

𝐸𝐼

𝑥2

2
−

𝑤0

𝐸𝐼

(𝑥 − 𝑎)2

2
                                                                       (58) 

𝑦′′′(𝑥) = 0 + 𝑐2 +
𝑤0

𝐸𝐼
𝑥 −

𝑤0

𝐸𝐼
(𝑥 − 𝑎)                                                                              (59) 

 Aplicando-se as condições de contorno da viga, dadas em (48), obtêm-se: 

𝑦′′′(𝐿) = 0 ⇒ 𝑐2 +
𝑤0

𝐸𝐼
𝐿 −

𝑤0

𝐸𝐼
(𝐿 − 𝑎) = 0                                                                     (60) 

𝑦′′(𝐿) = 0 ⇒ 𝑐1 + 𝑐2𝐿 +
𝑤0

𝐸𝐼

𝐿2

2
−

𝑤0

𝐸𝐼

(𝐿 − 𝑎)2

2
= 0                                                     (61) 

 Resolvendo o sistema formado pelas equações (62) e (63), encontra-se as constantes: 

𝑐1 =
𝑤0

2𝐸𝐼
𝑎2                                                                                                                             (62) 

𝑐2 = −
𝑤0

𝐸𝐼
𝑎                                                                                                                             (63) 

 Finalmente, substituindo as constantes (62) e (63) na equação geral (55) é determinada 

a equação da linha elástica requerida para esta viga. 

𝑦(𝑥) =
𝑤0 𝑎²

4𝐸𝐼
𝑥2 −

𝑤0𝑎

6𝐸𝐼
𝑥³ +

𝑤0

24𝐸𝐼
𝑥4 −

𝑤0

24𝐸𝐼
(𝑥 − 𝑎)4𝑢(𝑥 − 𝑎)                                     

𝑦(𝑥) =
𝑤0

24𝐸𝐼
[6𝑎²𝑥2 − 4𝑎𝑥³ + 𝑥4 − (𝑥 − 𝑎)4𝑢(𝑥 − 𝑎)]                                          (64) 

 Levando-se em conta as propriedades da função degrau unitário, dadas em (31), pode-

se observar que a equação (64) é igual às equações (7) e (8), exceto pelo sinal, devido à mudança 

do sentido da coordenada y. 

Exemplo 2: Viga biapoiada com carga concentrada. 
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Figura 11 – Viga biapoiada com carga concentrada. Fonte: Autores. 

 As condições de contorno da viga da figura 11 são: 

𝑃𝑎𝑟𝑎 𝑥 = 0 → 𝑦(0) = 0;           𝑦′′(0) = 0                                                                (65) 

𝑃𝑎𝑟𝑎 𝑥 = 𝐿 → 𝑦(𝐿) = 0;          𝑦′′(𝐿) = 0                                                                 (66) 

 Neste caso, a carga w(x) é representada com o auxílio da função impulso unitário ou 

função delta de Dirac, da seguinte forma: 

𝑤(𝑥) =  𝑃𝛿(𝑥 − 𝑎)                                                                                                               (67) 

 Substituindo-se a equação (67) na equação (46), tem-se: 

𝑑4𝑦

𝑑𝑥4
=  

𝑃

𝐸𝐼
𝛿(𝑥 − 𝑎)                                                                                                               (68) 

 Aplicando a Transformada de Laplace em ambos os membros da equação (68), obtém-

se: 

ℒ {
𝑑4𝑦

𝑑𝑥4
} =  ℒ {

𝑃

𝐸𝐼
𝛿(𝑥 − 𝑎)}                                                                                                        

𝑠4𝑌(𝑠) − 𝑠3 𝑦 (0) − 𝑠2 𝑦′(0) − 𝑠 𝑦′′(0) − 𝑦′′′(0) =
𝑃

𝐸𝐼
𝑒−𝑎𝑠                                   (69) 

 Aplicando-se as condições de contorno, dadas em (65), na equação (69), tem-se: 

𝑠4𝑌(𝑠) − 𝑠2 𝑦′(0) − 𝑦′′′(0) =
𝑃

𝐸𝐼
𝑒−𝑎𝑠                                                                            (70) 

 Fazendo: 𝑦′(0) = 𝑐1 e 𝑦′′′(0) = 𝑐2, a equação (70), fica: 
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𝑌(𝑠) =  
𝑐1

𝑠2
+  

𝑐2

𝑠4
+

𝑃

𝐸𝐼
 
𝑒− 𝑎𝑠

𝑠4
                                                                                               (71) 

 Aplicando a Transformada Inversa de Laplace em ambos os membros da equação (71), 

obtêm-se: 

ℒ−1{𝑌(𝑠)} = ℒ−1 {
𝑐1

𝑠2
+ 

𝑐2

𝑠4
+

𝑃

𝐸𝐼
 
𝑒− 𝑎𝑠

𝑠4
}                                                                                    

𝑦(𝑥) =  𝑐1

𝑥

1!
+ 𝑐2  

𝑥3

3!
+

𝑃

𝐸𝐼
 
(𝑥 − 𝑎)3

3!
𝑢(𝑥 − 𝑎)                                                                      

𝑦(𝑥) =  𝑐1𝑥 + 𝑐2  
𝑥3

6
+

𝑃

𝐸𝐼
 
(𝑥 − 𝑎)3

6
𝑢(𝑥 − 𝑎)                                                               (72) 

 Sabendo que para  𝑥 > 𝑎 ⟹ 𝑢(𝑥 − 𝑎) = 1, logo a equação (72) fica: 

𝑦(𝑥) =  𝑐1𝑥 + 𝑐2  
𝑥3

6
+

𝑃

𝐸𝐼
 
(𝑥 − 𝑎)3

6
                                                                              (73) 

 A determinação dos valores das constantes c1 e c2 é realizada por meio da primeira e 

segunda derivada da equação (73), associada à aplicação das condições de contorno da viga 

dadas em (66). 

𝑦′(𝑥) =  𝑐1 + 𝑐2  
𝑥2

2
+

𝑃

𝐸𝐼
 
(𝑥 − 𝑎)2

2
                                                                                (74) 

𝑦′′(𝑥) =  0 + 𝑐2 𝑥 +
𝑃

𝐸𝐼
(𝑥 − 𝑎)                                                                                       (75) 

 De acordo com as condições de contorno, dadas em (66), tem-se: 

𝑦′′(𝐿) = 0 ⇒ 𝑐2𝐿 +
𝑃

𝐸𝐼
(𝐿 − 𝑎) = 0                                                                                 (76) 

𝑦(𝐿) = 0 ⇒ 𝑐1𝐿 + 𝑐2  
𝐿3

6
+

𝑃

𝐸𝐼
 
(𝐿 − 𝑎)3

6
= 0                                                                 (77) 

 Resolvendo-se o sistema de equações formado pelas equações (76) e (77), obtêm-se: 
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𝑐1 =
𝑃𝑏

6𝐸𝐼𝐿
(𝐿2 − 𝑏2)                                                                                                              (78) 

𝑐2 = −
𝑃

𝐸𝐼𝐿
(𝐿 − 𝑎)                                                                                                                (79) 

 Substituindo-se os valores das constantes c1 e c2, dados respectivamente em (78) e (79), 

na equação geral (72), obtêm-se a equação da linha elástica para esta viga: 

𝑦(𝑥) =  
𝑃𝑏

6𝐸𝐼𝐿
(𝐿2 − 𝑏2)𝑥 −

𝑃

6𝐸𝐼𝐿
(𝐿 − 𝑎)𝑥3 +

𝑃

6𝐸𝐼
 (𝑥 − 𝑎)3𝑢(𝑥 − 𝑎)                            

𝑦(𝑥) =
𝑃

6𝐸𝐼𝐿
[ 𝑏(𝐿2 − 𝑏2)𝑥 − 𝑏𝑥3 + 𝐿 (𝑥 − 𝑎)3𝑢(𝑥 − 𝑎)]                                         (80) 

 Pode se observar que o resultado encontrado na equação (80), considerando-se as 

propriedades da função degrau unitário, é o mesmo aos encontrados nas equações (9) e (10), 

exceto pelo sinal. 

Exemplo 3: Viga em balanço com carga linearmente distribuída. 

 

Figura 12 – Viga em balanço com carga linearmente distribuída. Fonte: Autores. 

 As condições de contorno da viga da figura 12 são: 

𝑃𝑎𝑟𝑎 𝑥 = 0 → 𝑦′′(0) = 0;           𝑦′′′(0) = 0                                                            (81) 

𝑃𝑎𝑟𝑎 𝑥 = 𝐿 → 𝑦(𝐿) = 0;           𝑦′(𝐿) = 0                                                                (82) 

 A carga w(x) obedece duas condições: 
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𝑤(𝑥) = {
0      𝑥 < 0 

𝑤0

𝐿
𝑥         𝑥 > 0  }                                                                                         (83) 

 A carga w(x) dada pela função (83), pode ser representada pela função rampa unitária, 

da seguinte forma: 

𝑤(𝑥) =
𝑤0

𝐿
 𝑟(𝑥)                                                                                                                     (84) 

 Substituindo-se a equação (84) na equação (46), tem-se: 

𝑑4𝑦

𝑑𝑥4
=  

𝑤0

𝐸𝐼𝐿
𝑟(𝑥)                                                                                                                     (85) 

 Aplicando a transformada de Laplace em ambos os membros da equaqção (85), tem-se: 

ℒ {
𝑑4𝑦

𝑑𝑥4
} =  ℒ {

𝑤0

𝐸𝐼𝐿
𝑟(𝑥)}                                                                                                              

𝑠4𝑌(𝑠) − 𝑠3 𝑦 (0) − 𝑠2 𝑦′(0) − 𝑠 𝑦′′(0) − 𝑦′′′(0) =
𝑤0

𝐸𝐼𝐿

1

𝑠2
                                    (86) 

 Conhecidas as condições de contorno para o ponto A da viga da figura 12, dadas em 

(81) e aplicando-as na equação (86), obtêm-se: 

𝑠4𝑌(𝑠) − 𝑠3 𝑦 (0) − 𝑠2 𝑦′(0) =
𝑤0

𝐸𝐼𝐿

1

𝑠2
                                                                        (87) 

 Para a resolução da equação (87), é necessário determinar os valores das outras 

incógnitas. Chamando: y(0)=c1 e y’(0)=c2. 

𝑌(𝑠) =
𝑐1

𝑠
+

𝑐2

𝑠2
+

𝑤0

𝐸𝐼𝐿

1

𝑠6
                                                                                                    (88) 

 Aplicando a Transformada Inversa na equação (88), tem-se: 

ℒ−1 {𝑌(𝑠)} = ℒ−1 {
𝑐1

𝑠
+

𝑐2

𝑠2
+

𝑤0

𝐸𝐼𝐿

1

𝑠6
}                                                                                         

𝑦(𝑥) = 𝑐1 + 𝑐2

𝑥

1!
+

𝑤0

𝐸𝐼𝐿

𝑥5

5!
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𝑦(𝑥) = 𝑐1 + 𝑐2𝑥 +
𝑤0

𝐸𝐼𝐿

𝑥5

120
                                                                                                 (89) 

 Para se determinar as constantes c1 e c2, é necessário determinar a derivada primeira da 

equação (89). 

𝑦′(𝑥) = 0 + 𝑐2 +
𝑤0

𝐸𝐼𝐿

𝑥4

24
                                                                                                     (90) 

 Aplicando-se as condições de contorno dadas em (82), nas equações (90) e (89): 

𝑦′(𝐿) = 0 ⇒ 𝑐2 +
𝑤0

𝐸𝐼𝐿

𝐿4

24
= 0                                                                                            (91) 

𝑦(𝐿) = 0 ⇒ 𝑐1 + 𝑐2𝐿 +
𝑤0

𝐸𝐼𝐿

𝐿5

120
= 0                                                                             (92) 

 Resolvendo as equações (91) e (92), obtêm-se: 

𝑐1 =
𝑤0

𝐸𝐼𝐿

𝐿5

30
                                                                                                                            (93) 

𝑐2 = −
𝑤0

𝐸𝐼𝐿

𝐿4

24
                                                                                                                        (94) 

 Substituindo os valores das constantes dados em (93) e (94) na equação (89), determina-

se a equação da çunha elástica para a viga em estudo. 

𝑦(𝑥) =
𝑤0

𝐸𝐼𝐿

𝐿5

30
 −

𝑤0

𝐸𝐼𝐿

𝐿4

24
𝑥 +

𝑤0

𝐸𝐼𝐿

𝑥5

120
                                                                                   

𝑦(𝑥) =
𝑤0

120𝐸𝐼𝐿
[4𝐿5  − 5𝐿4𝑥 + 𝑥5]                                                                                 (95) 

 O resultado encontrado na equação (95), é a mesma à encontrada na equação (9), exceto 

pelo sinal. 

Exemplo 4: Viga biapoiada com carga momento. 
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Figura 13 – Viga biapoiada com carga momento. Fonte: Autores. 

 As condições de contorno da viga da figura 13 são: 

𝑃𝑎𝑟𝑎 𝑥 = 0 → 𝑦(0) = 0;           𝑦′′(0) = 0                                                                (96) 

𝑃𝑎𝑟𝑎 𝑥 = 𝐿 → 𝑦(𝐿) = 0;          𝑦′′(𝐿) = 0                                                                 (97) 

 Neste caso, a carga w(x) é representada pela função unidade dupla, isto é: 

𝑤(𝑥) =  𝑀0𝛿′(𝑥 − 𝑎)                                                                                                            (98) 

 Substituindo-se a equação (98) na equação (46), tem-se: 

𝑑4𝑦

𝑑𝑥4
=  

𝑀0

𝐸𝐼
𝛿′(𝑥 − 𝑎)                                                                                                             (99) 

 Aplicando a transformada de Laplace em ambos os membros da equação (99), obtêm-

se: 

ℒ {
𝑑4𝑦

𝑑𝑥4
} =  ℒ {

𝑀0

𝐸𝐼
𝛿′(𝑥 − 𝑎)}                                                                                                      

𝑠4𝑌(𝑠) − 𝑠3 𝑦 (0) − 𝑠2 𝑦′(0) − 𝑠 𝑦′′(0) − 𝑦′′′(0) =
𝑀0

𝐸𝐼
𝑠𝑒−𝑎𝑠                              (100) 

 Aplicando-se as condições de contorno dadas em (96) na equação (100), tem-se: 

𝑠4𝑌(𝑠) − 𝑠2 𝑦′(0) − 𝑦′′′(0) =
𝑀0

𝐸𝐼
𝑠𝑒−𝑎𝑠                                                                      (101) 

 Fazendo: 𝑦′(0) = 𝑐1 e 𝑦′′′(0) = 𝑐2, a equação (101), fica: 
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𝑌(𝑠) =  
𝑐1

𝑠2
+ 

𝑐2

𝑠4
+

𝑀0

𝐸𝐼
 
𝑒− 𝑎𝑠

𝑠3
                                                                                           (102) 

 Aplicando-se a Transformada Inversa de Laplace em ambos os membros da equação 

(102), obtêm-se: 

ℒ−1{𝑌(𝑠)} = ℒ−1 {
𝑐1

𝑠2
+  

𝑐2

𝑠4
+

𝑀0

𝐸𝐼
 
𝑒− 𝑎𝑠

𝑠3
}                                                                                    

𝑦(𝑥) =  𝑐1

𝑥

1!
+ 𝑐2  

𝑥3

3!
+

𝑀0

𝐸𝐼
 
(𝑥 − 𝑎)2

2!
𝑢(𝑥 − 𝑎)                                                                       

𝑦(𝑥) =  𝑐1𝑥 + 𝑐2  
𝑥3

6
+

𝑀0

𝐸𝐼
 
(𝑥 − 𝑎)2

2
𝑢(𝑥 − 𝑎)                                                             (103) 

 Para  𝑥 > 𝑎 ⟹ 𝑢(𝑥 − 𝑎) = 1, logo a equação (103) fica: 

𝑦(𝑥) =  𝑐1𝑥 + 𝑐2  
𝑥3

6
+

𝑀0

𝐸𝐼
 
(𝑥 − 𝑎)2

2
                                                                              (104) 

 A determinação dos valores das constantes c1 e c2 é realizada por meio da primeira e 

segunda derivada da equação (104). 

𝑦′(𝑥) =  𝑐1 + 𝑐2  
𝑥2

2
+

𝑀0

𝐸𝐼
 (𝑥 − 𝑎)                                                                                  (105) 

𝑦′′(𝑥) =  0 + 𝑐2 𝑥 +
𝑀0

𝐸𝐼
                                                                                                     (106) 

 Aplicando-se as condições de contorno da viga dadas em (97), tem-se: 

𝑦′′(𝐿) = 0  ⇒     𝑐2𝐿 +
𝑀0

𝐸𝐼
= 0                                                                                       (107) 

𝑦(𝐿) = 0  ⇒    𝑐1𝐿 + 𝑐2  
𝐿3

6
+

𝑀0

𝐸𝐼
 
(𝐿 − 𝑎)2

2
= 0                                                         (108) 

 Resolvendo-se o sistema de equações formado pelas equações (107) e (108), obtêm-se 

as constantes c1 e c2: 
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𝑐1 =
𝑀0

6𝐸𝐼𝐿
[𝐿2 − 3(𝐿 − 𝑎)2]                                                                                             (109) 

𝑐2 = −
𝑀0

𝐸𝐼𝐿
                                                                                                                          (110) 

 Substituindo-se os valores das constantes c1 e c2 obtidos em (109) e (110) na equação 

(103), obtêm-se a equação da linha elástica para viga: 

𝑦(𝑥) =  
𝑀0

6𝐸𝐼𝐿
[𝐿2 − 3(𝐿 − 𝑎)2]𝑥 −

𝑀0

6𝐸𝐼𝐿
𝑥3 +

𝑀0

2𝐸𝐼
 (𝑥 − 𝑎)2𝑢(𝑥 − 𝑎)                            

𝑦(𝑥) =
𝑀0

6𝐸𝐼𝐿
{[𝐿2 − 3(𝐿 − 𝑎)2]𝑥 − 𝑥3 + 3𝐿 (𝑥 − 𝑎)2𝑢(𝑥 − 𝑎)}                           (111) 

 Pode-se observar que os resultados encontrados na equação (111) não são exatamente 

iguais, literalmente, aos encontrado nas equações (12) e (13), mas, se forem realizadas as 

operações algébricas convenientes, resultaram em expressões algébricas idênticas, exceto o 

sinal. Essas “diferenças”, costumam acontecer as vezes, apenas devido ás características 

particulares de cada método. 

 

Conclusões 

  

As transformadas de Laplace utilizadas na resolução de uma Equação Diferencial 

Ordinária, consiste em realizar uma mudança de variável, por meio de uma integral imprópria, 

transformando-a em uma equação algébrica, que uma vez resolvida, é feita a reversão do 

processo, aplicando-se a transformada inversa de Laplace e posteriormente as condições de 

contorno, chegando-se assim, à solução do problema. 

 A utilização de funções especiais, como a função degrau unitária, a função rampa 

unitária, a função impulso unitário e a função unidade dupla, assim como as suas 

respectivas transformadas de Laplace, permitem representar, os tipos de carregamentos 

(carga uniformemente distribuída, carga linearmente distribuída, carga concentrada e carga 

momento), normalmente utilizados no cálculo de deslocamentos e esforços em vigas. 
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 As Transformadas de Laplace podem ser aplicadas também no cálculo de deslocamentos 

em vigas hiperestáticas, já que o grau de hiperestaticidade das vigas não interferem na sua 

resolução, ocorrerá apenas um acrescimo das condições de contorno igual ao número de 

constantes. 

 Foi demonstrado que a utilização das transformadas de Laplace, são uma ferramenta 

valiosa e a tornam uma alternativa acessível para a resolução da linha elástica de uma viga, já 

que os resultados são os mesmos que os obtidos por outros métodos, além de facilitar e 

simplificar, de forma considerável, os cálculos matemáticos envolvidos e a aplicação das 

condições de contorno, que ficam restritas apenas aos tipos de vinculação da viga.  
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