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Resumo: Os vérios tipos de problemas que surgem no estudo da Fisica, Engenharia e outras areas,
envolvem equacgBes compostas por funcBes e derivadas dessas fungdes, chamadas de equacOes
diferenciais, as quais sdo ainda objeto de estudo por um ramo das matematicas, devido ao grande nimero
de aplicacdes que dependem da sua resolucdao. Embora ja existam métodos para resolver essas equacoes,
seja de forma analitica ou numérica, as Transformadas de Laplace, podem representar uma alternativa
de resolugdo dessas equagOes. Na Engenharia Civil, no caso de estruturas compostas por pecas
estruturais lineares, as deflexes das mesmas sdo governadas por equacdes diferenciais ordinarias de 42
ordem, podendo-se entdo, utilizar as Transformadas de Laplace para determinar as equacdes das linhas
elasticas dessas pegas estruturais e assim poder calcular os deslocamentos ao longo de toda a estrutura.
As Transformadas de Laplace, além de ter muitas outras aplicagdes, sdo bastante apropriadas para
resolver equacdes diferenciais, fazendo com que elas se tornem simples equacdes algébricas, facilitando
assim, a sua resolucdo. Para demostrar a eficiéncia da aplicacdo das Transformadas de Laplace,
exemplos sdo realizados e comparados com os obtidos da forma tradicional.

Palavras-chave: Deformacdo. Equagdes diferenciais. Transformadas de Laplace. Vigas.

Resumen: Los diversos tipos de problemas que surgen en el estudio de Fisica, Ingenieria y otras areas,
involucran ecuaciones compuestas por funciones y sus derivadas, llamadas ecuaciones diferenciales, las
cuales son aun objeto de estudio en una rama de las matemaéticas, debido a la gran cantidad de
aplicaciones que dependen de su resolucion. Si bien ya existen métodos para resolver estas ecuaciones,
ya sea em su forma analitica o numérica, las Transformadas de Laplace pueden representar una
alternativa para la resolucion de esas ecuaciones. En Ingenieria Civil, en el caso de estructuras
compuestas por elementos estructurales lineales, sus deflexiones se rigen por ecuaciones diferenciales
ordinarias de cuarta orden. Las Transformadas de Laplace pueden utilizarse para determinar las
ecuaciones de las lineas elésticas de eses elementos estructurales y, por lo tanto, calcular los
desplazamientos a lo largo de la estructura. Las Transformadas de Laplace, ademas de tener muchas
otras aplicaciones, son muy adecuadas para resolver ecuaciones diferenciales, transformandolas en
ecuaciones algebraicas simples, lo que facilita su resolucién. Para demostrar la eficiencia de la
aplicacion de las Transformadas de Laplace, ejemplos son realizados y comparados con los obtenidos
de forma tradicional.

Palabras clave: Deformacion. Equaciones diferenciales. Transformadas de Laplace. Vigas.
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Introducéo

A Matematica teve grandes avancos nos séculos 17 e 18, quando surgiram
personagens importantes cujos trabalhos contribuiram para o estudo das ciéncias em todos
0s ambitos, como os trabalhos de René Descartes (1596-1650) e Pierre de Fermat (1601-
1665), que uniram a Algebra e Geometria num mesmo ambiente formando a Geometria
Analitica (Boyer, 2012), e os trabalhos de Isaac Newton (1643-1727) e Gottfried Wilhelm
Leibniz (1646-1716), considerados como os criadores do Célculo Diferencial e a sua
relagdo com o Calculo Integral (ANTON, et al., 2012), permitindo assim, o estudo de
fendmenos inerentes as ciéncias exatas e da natureza, biomédicas ou sociais aplicadas, tendo
ainda presenca quase indispensavel no ambito das areas que se ocupam predominantemente da
geracdo de tecnologias. E assim, logo que surgiram as Equac6es Diferenciais Ordinarias,
ocupando o seu lugar de importancia nas pesquisas matematicas, ja que elas permitem
modelar os fenbmenos da natureza e entender as suas funcdes, 0s seus comportamentos e
até dar a possibilidade de fazer previsdes dos mesmos, fornecendo assim, valiosas
informacdes.

Um matematico, astrbnomo e estatistico francés dessa €poca, autor de varios
trabalhos importantes, foi Pierre-Simon, Marqués de Laplace (1749-1847), quem utilizou
Equacdes Diferenciais em suas pesquisas sobre o movimento dos planetas ao redor de uma
estrela, assim como outros fendmenos vistos no Universo. As suas principais contribuicdes
na matematica foram: a Equacdo de Laplace para potenciais elétricos e mecéanicos, 0
Operador Diferencial Laplaciano e a Transformada de Laplace. Sendo esta ultima,
justamente utilizada para facilitar a resolucdo de problemas envolvendo Equagdes
Diferenciais Ordinarias. Desde essa época até os dias atuais, a sua transformada tem
se mostrado uma poderosa ferramenta na solucdo de Equacdes Diferenciais ndo s6 na
Matematica, mas também em outros campos da ciéncia, como a Fisica, a Engenharia e
outros.

Neste trabalho, é utilizada a Transformada de Laplace (SPIEGEL, 1971) para
resolver a Equacéo Diferencial da Linha Elastica de uma viga, como uma alternativa para

resolucdo de Equacdes Diferenciais Ordinarias (ZILL, 2001), visto que a resolucdo por outros
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métodos como a da variacdo dos parametros, utilizando séries ou resolvendo-se
numericamente, seria bastante trabalhosa. Para isso, é necessario, inicialmente, determinar
a equacdo Diferencial da Linha Elastica de uma viga submetida a um carregamento e

realizar o estudo da Transformada de Laplace.

Equacdo diferencial da linha elastica de uma viga

Sabe-se que as flechas e declividades ao longo de uma viga que suporta uma carga w(x)
(Figura 1 a), podem ser obtidas a partir da equacdo da sua linha elastica, representada por uma
equacao diferencial de segunda ordem (HIBBELER, 2019):

d’y  M(x)
dx?2  EI

€y

Onde:
M (x) - momento fletor
E - modulo de elasticidade transversal

| - momento de inércia da area da secdo transversal

oI, i)

c D =l € Cyviav

A ‘T
(a) &)
Figura 1- a) Viga com carga distribuida w(x) continua; b) Elemento diferencial da viga. Fonte: Autores.

Considerando-se em equilibrio o elemento diferencial Ax da viga (Figura 1, b), o qual

estd submetido a uma carga distribuida continua w(x), podem ser obtidas as relacGes
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diferenciais que existem entre a carga w(x), a forca cortante V(x) e o0 momento fletor M(x),
(BEER et al., 2021), que séo:

av(x)

dx W) @)
dM(x) B

dx Ve )

Diferenciando-se ambos 0os membros da equacgéo (1) em relacdo a x e considerando que
0 produto EI seja constante, tem-se:

d’y 1dMx) _V(x)

dx3  EI dx El )
Diferenciando-se ambos os membros da equacao (4), obtém-se:

d*y 1dV(x)

dx*  EI dx ®)
Substituindo-se a equacéo (2) na equacgéo (5), tem-se:

dty  w)

dx* ~  EI ©)

A equacdo (6) é uma Equacédo Diferencial Ordinaria de quarta ordem (BRONSON e
COSTA, 2008), chamada de Equacdo Diferencial da Linha Elastica de uma viga submetida a
uma carga distribuida w(x), a qual pode ser resolvida utilizando-se as Transformadas de
Laplace, objetivo do presente trabalho. A equacdo (1) é normalmente utilizada pelos métodos
tradicionais, como é 0 método da integracdo direta, que consiste em realizar duas integraces
consecutivas, gerando assim duas constantes por cada trecho da viga, as quais sao determinadas
a partir da aplicacdo das condicdes de contorno da viga em questdo. Alguns exemplos (NASH,
1982 e NASH, 2001), utilizados para comparar com os resultados obtidos pela aplicacdo das
transformadas de Laplace, séo os seguintes:

Exemplo 1: Viga engastada com carga distribuida parcial.
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1 Mo

L |

Figura 2 — Viga engastada com carga distribuida parcial. . Fonte: Autores.

w

Trecho AC - y(x) = T](E)'I (4ax® — 6a%x? — x%) (7)
Wo 3 4

Trecho CB - y(x) = m(—éla x+a*) (8)

Exemplo 2: Viga biapoiada com carga concentrada.

r1 P

Figura 3 — Viga biapoiada com carga concentrada. Fonte: Autores.

P
— 3_p(12 _ p2
Trecho AC — y(x) STl (bx®> — b(L* — b*)x) 9)
P
Trecho CB - y(x) = CEIL (bx® — L(x —a)® — b(L? — bP)x) (10)

Exemplo 3: Viga em balanco com carga linearmente distribuida.

Figura 4 — Viga em balanco com carga linearmente distribuida. Fonte: Autores.
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Wo

Trecho AB - y(x) = ~130EIL

(x5 — 5L%*x + 4L5) (11)

Exemplo 4: Viga biapoiada com carga momento.

Y1 M,

A . B,

Figura 5 — Viga biapoiada com carga momento. Fonte: Autores.

M
Trecho AC - y(x) = 6]5'%(363 + 2L%x — 6Lax + 3a®x) (12)

My

Trecho AC — y(x) = SEIL

(x3 — 3Lx? 4+ 2L?x + 3a*x — 3La?) (13)

A transformada de LAPLACE

Seja f(t) uma funcdo de t definida para t>0, entdo, a transformada de Laplace de f(t),
representada por L [f(t)], é definida por:

(o]

LIF(0)] = f et F(O)dt = F(s) (14)

0

onde supoe-se que s seja um parametro real. A transformada de Laplace de f(t) existe se a
integral na expressao (14) converge para algum valor de s, caso contrario, ndo existe. O
simbolo £ é chamado de operador de transformacéo de Laplace (SPIEGEL, 1971).
Normalmente sdo utilizadas letras minusculas para denotar a funcdo a ser
transformada, como f(t), g(t), y(t), e letras maiusculas, como F(s), G(s), Y(s), para denotar,
respectivamente, suas correspondentes transformadas de Laplace.
A integral da expressao (14) € um tipo de integral impropria, cujo limite existe e que,

por definicdo, tem pelo menos um dos seus limites de integracdo ilimitado. Esse tipo de
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integrais pode ser resolvida procedendo-se da seguinte forma:

oo A
fo g(0)dt = lim fo g(o)dt (15)

onde g(t) ¢ uma funcdo continua no intervalo 0<t<oo.
Por exemplo, para determinar a transformada de Laplace de uma funcao f(t)=t,

aplica-se a definicdo dada em (14), isto é:

LIF(©)] = f e~StF(O)dt = F(s)

0

%} P
L[t] = f e Sttdt=lim | e Sttdt (16)
0

P—oo 0

Resolvendo a integral da equacéo (16), obtém-se:

£l =5 a7)

Procedendo-se dessa forma, é possivel determinar as transfomadas de Laplace de
outras fungdes como as indicadas na Tabela 1 (SCHIFF, 1999), necessarias para a aplicagcdo
no presente trabalho, onde supde-se que: s>0 e que n! é o fatorial de n, sendo

nl=1x2x3x4x5x.....n.

Tabela 1 Transformada de Laplace de algumas funcdes.

f(@) LIf ()] = F(s)
1 1 1
s
2 t 1
52
3 tn n!
Sn+1
4 et 1
s—a
5 sin at a
s2 + a?
6 cos at S
s2 + a?

Fonte: Autores.
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A transformada inversa de LAPLACE

Se a Tranformada de Laplace de uma funcéo f(t) € F(s), ou seja, se L[f(t)] = F(s),
entdo f(t) é chamada Tranformada Inversa de Laplace de F(s) e é escrita simbdlicamente
como f(t) = L7Y[F(s)], onde £~! é chamado de operador da transformada inversa de

Laplace.

Teorema de Lerch

Se a fungdo f(t) for restrita e seja seja seccionalmente continua em todo intervalo finito
0 < t < N edeordem exponecial parat > N, entdo a transformada inversa de Laplace de F(s),

isto &, L7[F(s)] = f(¢), é lnica.

A Transformada inversa de Laplace também possui a propriedade da linearidade. Se c:
e C2 sdo constantes quaisquer, enquando F;(s) e F,(s) sdo as transformadas de Laplace de

f1(t) e f,(t), respectinamente, entao:
L7He Fi(s) + ¢oF(8)} = ¢ LTHF ()} + ¢ L7HF,(s)}
L7HciFi(s) + ¢F,()} = c1fi(8) + cofo(2) (18)

As transformadas inversas de Laplace sdo geralmente dispostas em tabelas (SPIEGEL,

1971), algumas delas estdo apresentadas na tabela 2.

Tabela 2 Transformada inversa de Laplace de algumas func¢es.

F(s) LFS]=f(®)
1 1 1
S
2 1 t
s?
3 1 t"
gn+1 F
4 1 eat
s—a
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5 1 sin at
s2+ a? a

6 S cos at
s2+ a?

. Fonte: Autores.

Algumas propriedades da transformada de Laplace

1 — Propriedade de linearidade
Sendo cy e ¢ constantes quaisquer, f1(t) e f2(t) fungdes cujas transformadas de Laplace

sdo Fi(s) e F2(s), respectivamente, entdo:
Llci1f1(t) + c2f2(8)] = c1 LIf1 (D] + 2 L[f>(£)]
Llc1 f1(8) + c2f2(0)] = ¢1F1(8) + c2F,(s) (19)

2 — Propriedades de translacao

a) Se LIf(H)] =F(s) entio:
Llef(®)]=F(s—a) (21)
b) Se LIFO]=F(s) e g = {f(to_a) £> 9 entior
Llg(©)] = e™*F(s) (22)
Nas propriedades a seguir considera-se que:
Se LIf(®)] =F(s) entdo:
3 — Propriedade de mudanca de escala
cifan) = (2) (23)
4 — Transformada de Laplace de derivadas
LIf'®)] = sF(s) — f(0) (24)
LIf"(®)] = s*F(s) — sf(0) — £'(0) (25)
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LIFM(O)] = s"F(s) = s" 71 f(0) = s"72f7(0) — - —sf"72(0) — f"71(0)  (26)

5 — Transformada de Laplace de integrais

[ f fadu ] &) 27)

6 — Multiplicacéo por t"
n

d
LILf (O] = (D" F(s) = (=1)"F(s) (28)

7 — Diviséo port

L [@] = f:f(u)du (29)

t
Sendo necessario a existéncia do: hm ! (t)

Algumas funcdes especiais da transformada de Laplace

S&o necessarias a utilizacdo de algumas funcdes especiais para a representacdo dos varios
tipos de cargas que podem atuar em uma viga.
1 — A funcdo degrau unitario

Chamada também de funcdo de Heaviside, representada graficamente na figura 6

a), é definida por:

0 t<0
u®={] 3, (30)
Se houver translacdo na func¢do, mostrada na figura 6 b), fica:
u(t—a) = {0 t<a (31)
1 t>a
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f(t) 1 ft)

— 1+ —

I
I
|
0 ; 0 a
(a) (b)

Figura 6 - a) Funcdo degrau unitario; b) Funcéo degrau unitario com atraso t=a. Fonte: Autores.

A funcdo degrau unitario é utilizada para representar cargas uniformemente
distribuidas e as suas transformadas de Laplace séo:

1
Liu®] = U(s) == (32)
1
Llu(t—a)] =e *U(s) = ;e‘“s (33)

2 — A funcéo rampa unitaria
A funcdo rampa unitéria, representada graficamente na figura 7 a), é definida por:
_ (0 t<0
r(t) = {t t>0 (34)
ft)

| S

o
—t e — — —
-~

(@)

Figura 7 - a) Funcdo rampa unitaria; b) Funcdo rampa unitaria com atraso t=a. Fonte: Autores.

No caso de translagdo, mostrada na figura 7 b), fica:

0=l 50 =
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A funcdo rampa unitéria € utilizada para representar cargas linearmente distribuidas
e as suas transformadas de Laplace séo:

1
Llr(®)] =R(s) = 2 (36)
1
Llr(t—a)] =e *R(s) = S—Ze‘as (37)

3 — A funcéo impulso unitario

A funcéo de impulso unitéario, chamada também de funcéo delta de Dirac, denotada

como d(t), ¢ definida como:

0=, gt 0
Com a propriedade de que:

f_oo o(t)dt =1 (39)
A func¢do impulso unitario com atraso é definida como:

e-w={, 0 et a0

As funcgdes impulso unitario com atraso e sem atraso, aproximadas no limite, sdo
representadas graficamente na figura 8.

() f(t)

L

1
0 t 0
(b

—

Figura 8 - a) Fung&o impulso unitario; b) Fungdo impulso unitario com atraso t=a. Fonte: Autores.
A funcdo impulso unitério é utilizada para representar cargas concentradas e as suas

transformadas de Laplace sdo as seguintes:
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LI5M)] =1 (41)
LIS(t—a)] =e™ (42)
4 — A fungéo unidade dupla

Chamada também de doblete unitario, representada graficamente na figura 6 a), é
definida como derivada da funcéo delta de Dirac, isto é:

d
5'(t) = 2 8() (43)

As funcbes unidade dupla com atraso e sem atraso, aproximadas no limite, sdo

representadas graficamente na figura 9.

f(t) ft)

la 1 T
0 t 0 al t
-ly -1

(@) (b)

Figura 9 - a) Funcéo unidade dupla; b) Funcdo unidade dupla com atraso t=a. Fonte: Autores.

A funcdo unidade dupla é utilizada para representar cargas momento e as suas
transformadas de Laplace sdo:

LI§'®] =s (44)

LI§'(t—a)]=se™® (45)

Resultados e discussao

Neste item, os exemplos 1, 2, 3 e 4, apresentados ateriormente, sdo resolvidos
utilizando-se as transformadas de Laplace, a partir da equacdo (6), com o sinal da carga
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positiva, ou seja, adotando a coordenada y no sentido para baixo, isto é:
dy  w()

dx*  EI

(46)

As condicdes de contorno das vigas sdo determinadas de acordo com tipo de

vinculagéo das suas extremidades, como se mostra na Tabela 3.

Tabela 3 — CondicGes de contorno de uma viga.

Extremidade da viga Condig0es de contorno
Engastada y = 0 (Flecha) y' = 0 (Declividade)
Livre y" = 0 (Momento) | y""' = 0 (Cortante)
Simplesmente apoiada | y = 0 (Flecha) y'" = 0 (Momento)

Fonte: Autores.

Exemplo 1: Viga engastada com carga distribuida parcial.

Hlﬁll ¢

X
ﬂ.
‘ L
yl

Figura 10 — Viga engastada com carga distribuida parcial. Fonte: Autores.

As condigOes de contorno da viga da figura 10 séo:

Parax =0 - y(0) = 0; y'(0)=0 (47)

Parax =L - y"(L) = 0; y'"(L) =0 (48)

A carga w(x) obedece duas condicdes:

Wy (0<x<a)}
0 (x> a)

w(x) = { (49)

A carga w(x) dada pela fungdo (49), pode ser representada pela funcéo degrau unitério
da seguinte forma:
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w(x) = wolu(x) —ulx — a)] (49)

Dessa forma, substituindo-se a equacao (49) na equacdo (46), tem-se:

d*y  wolu(x) —u(x —a)]
dx* EI

(50)

Aplicando a Transformada de Laplace em ambos os membros da equacéo (51), resulta:

d*y wol[u(x) —u(x — a)]
EREEEE

s*Y(s) =57y (0) —s?y'(0) —sy"(0) —y"'(0) = —|-—

woll e™®
El ls S ] (52)

Aplicando as condic¢des de contorno desta viga dadas em (47), na equacéo (52), tem-se:

1 —as
S4Y(s) — 5"(0) — "' (0) = % - es ] (53)

Fazendo: y"'(0) = ¢, e y""'(0) = ¢, na equacdo (53), tem-se:

Y(s) = o) N c, Wyl e‘as] ”
VEFT T E ST sS (54)
Aplicando a Transformada Inversa na equacéo (54):
1 €3 W[l e™®
1:—1 Y :L_l {_1 _2 _0[__—]}
O} s3 * s4 + EIls5  s°
2 x3 woxt  wy(x —a)?
y(x) = c1§+02§+ﬁz—ﬁ—4! u(x —a)
() = 2+ x3+w0x4 wo (x — a)* ( ) e
Y = Ay T e T 24 Bl 24 YT ¢ (55)

Para aplicar as condi¢Oes de contorno do ponto B da viga (figura 10), dadas em (48), no
qual x>a, a funcdo degrau unitério vale 1, isto é: u(x — a) = 1, logo a equacdo (55), fica:

2 x> wox*  wy(x—a)t

y(x)=C17+C2€+Eﬁ_E 24 (56)
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Calculando-se as derivadas de primeira, segunda e terceira ordem da equacéo (56),
obtém-se:

2 wex® wy(x—a)d

) — T et Mo 7
y'(x) clx+c22+EI6 T (57)
2 2
v wox* wy(x—a)
y (x)—c1+czx+EI T > (58)
M) = 0+ ¢y + 22y — 20 59
Aplicando-se as condic¢des de contorno da viga, dadas em (48), obtém-se:
nr _ ﬂ _ m _ —
y (L)—O:CZ+EIL I (L=a)=0 (60)
., wo L2 wy (L —a)?
VL) =0=>c¢+cl+———-———"—"=0 (61)

El 2 EI 2

Resolvendo o sistema formado pelas equac@es (62) e (63), encontra-se as constantes:

Wo
= — 2
Wo
Cr = —Ea (63)

Finalmente, substituindo as constantes (62) e (63) na equacdo geral (55) é determinada
a equacdo da linha elastica requerida para esta viga.

2
_woa® , wed . Wy, Wo
YO = Zrr ¥ ~em® T aapr " zap ¢ T W — @)
y(x) = o [6a%x? — 4ax® + x* — (x — a)*u(x — a)] (64)
24E1

Levando-se em conta as propriedades da funcao degrau unitario, dadas em (31), pode-
se observar que a equacéo (64) é igual as equacdes (7) e (8), exceto pelo sinal, devido a mudanca

do sentido da coordenada y.
Exemplo 2: Viga biapoiada com carga concentrada.
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P

A, Cv B,

&=
¢ a " b—

yl

Figura 11 — Viga biapoiada com carga concentrada. Fonte: Autores.

As condic¢Oes de contorno da viga da figura 11 séo:
Parax =0 - y(0) = 0; y'(0)=0 (65)

Parax =L - y(L) = 0; y'(L)=0 (66)

Neste caso, a carga w(x) é representada com o auxilio da funcdo impulso unitario ou
funcdo delta de Dirac, da seguinte forma:

w(x) = P6(x —a) (67)
Substituindo-se a equacéo (67) na equacao (46), tem-se:

Y _ P s 68
dx*  EI°Y T ° (68)

Aplicando a Transformada de Laplace em ambos os membros da equacéo (68), obtém-

Se:
d*y) _ P 5
L{W}_ L {E (x—a)}

P
s (s) =5y (0) —s?y'(0) —s y"(0) —y"'(0) = e (69)

Aplicando-se as condig¢des de contorno, dadas em (65), na equacgéo (69), tem-se:

P
s*Y(s) —s?y'(0) —y"'(0) = e (70)

Fazendo: y'(0) = ¢; e y""'(0) = ¢,, a equacdo (70), fica:

329



REVISTA

MIRANTE

Revista Mirante, Anapolis (GO), v. 18, n. 2, p. 313-338, dez. 2025. ISSN 1981-4089

c; ¢, P e %
Y(s)= S+ 5 +—
(s) s2  s* EI s*

(71)

Aplicando a Transformada Inversa de Laplace em ambos os membros da equacéo (71),
obtém-se:

c c P e &
-1 Y — —1{_1 _2 I }
L7HY(s)} =L 52+s4+E1 =

x> P (x—a)d

x
y(x) = TR 3|+— T u(x —a)

x3 P (x—a)d
y(x) = clx+c2—+—(—)

e c u(x —a) (72)

Sabendo que para x > a = u(x —a) = 1, logo a equacéo (72) fica:

(xX) = cx + LN Gl 73
yx) = 1x C26 El 6 (73)

A determinacdo dos valores das constantes c1 e c. é realizada por meio da primeira e
segunda derivada da equacdo (73), associada a aplica¢do das condi¢bes de contorno da viga
dadas em (66).

x2 P (x—a)?

y(x)=c1+c27+ﬁ > (74)
r P

y(x)=0+c2x+ﬁ(x—a) (75)

De acordo com as condicdes de contorno, dadas em (66), tem-se:
P
y"'(L) =0 = c,L + E(L —a)=0 (76)
L} P (L- a)3

yL) =0=>c¢l+c; —+——F— (77)

6 EI 6

Resolvendo-se o sistema de equacdes formado pelas equagdes (76) e (77), obtém-se:
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Pb

C1=emr (L = b?) (78)
P
T (79)

Substituindo-se os valores das constantes c e ¢z, dados respectivamente em (78) e (79),

na equacao geral (72), obtém-se a equacdo da linha eléstica para esta viga:

y(x) = i(L2 —b?)x — L(L —a)x3 + L (x —a)3u(x — a)

6EIL 6EIL 6E1
y(x) = P [b(L? —b»)x —bx® + L (x — a)3u(x — a)] (80)
6EIL

Pode se observar que o resultado encontrado na equacdo (80), considerando-se as
propriedades da funcdo degrau unitario, € 0 mesmo aos encontrados nas equacdes (9) e (10),

exceto pelo sinal.

Exemplo 3: Viga em balango com carga linearmente distribuida.

Figura 12 — Viga em balanco com carga linearmente distribuida. Fonte: Autores.

As condic¢Oes de contorno da viga da figura 12 séo:
Parax =0 - y"(0) = 0; y'""(0)=0 (81)

Parax =L - y(L) = 0; y'(L)=0 (82)

A carga w(x) obedece duas condigdes:
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0 x<0
—lw
w(x)—{Tox x>0}

(83)

A carga w(x) dada pela funcéo (83), pode ser representada pela funcdo rampa unitéaria,
da seguinte forma:

w(x) = % r(x) (84)

Substituindo-se a equacéo (84) na equacao (46), tem-se:

dy _ 85
dxt EILr(x) (85)

Aplicando a transformada de Laplace em ambos os membros da equaqgcéo (85), tem-se:
d*y
£ {W} {EIL (o}
1

s*Y(s) —s®y (0) —s?y'(0) —s y"(0) —y""(0) = ms—z (86)

Conhecidas as condi¢fes de contorno para o ponto A da viga da figura 12, dadas em

(81) e aplicando-as na equacéo (86), obtém-se:

1
st (s) =5y (0) —s?y'(0) = —— (87)

EIL s?

Para a resolucdo da equacdo (87), é necessario determinar os valores das outras
incognitas. Chamando: y(0)=c1 e y’(0)=c>.

cz wol

Y(s) = EIL 56

(88)

Aplicando a Transformada Inversa na equagéo (88), tem-se:

c w, 1

L7} = L7 { 2+EIOLS}
x  wy x°
Y(x)—cl'l'CzF'i'ma
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() = ¢4 + Cpx + i 89
YW= aT XTI (89)

Para se determinar as constantes c1 e 2, & necessario determinar a derivada primeira da

equacéo (89).

') = 0 + ¢y + 222 a 90
YW =T 2 TR0 (99)
Aplicando-se as condig¢des de contorno dadas em (82), nas equacdes (90) e (89):
"(L)=0> +W°L4—0 91
YW == T o T OD)
(L) = 0> ¢y + cyL + -2 L5—0 92
Y == ar et Y120 (92)
Resolvendo as equacdes (91) e (92), obtém-se:
_wy L 93
‘T EIL30 3)
_ow L 94
2= TEIL24 o)

Substituindo os valores das constantes dados em (93) e (94) na equacéo (89), determina-

se a equacdo da ¢unha elastica para a viga em estudo.

()_WOLS wo L* L Wo x>

YW = EmL30 T EL24” TEIL120

y(x) = —20_[415 — 514x + x5] (95)
120EIL

O resultado encontrado na equacdo (95), é a mesma a encontrada na equagéo (9), exceto
pelo sinal.

Exemplo 4: Viga biapoiada com carga momento.
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Figura 13 — Viga biapoiada com carga momento. Fonte: Autores.

As condic¢Bes de contorno da viga da figura 13 séo:

Parax =0 - y(0) = 0; y'(0)=0 (96)
Parax =L - y(L) = 0; y'"(L)=0 (97)
Neste caso, a carga w(X) é representada pela fungdo unidade dupla, isto é:

w(x) = Myé'(x — a) (98)
Substituindo-se a equacdo (98) na equacao (46), tem-se:

dty M, ,
W_ E&(x—a) (99)

Aplicando a transformada de Laplace em ambos os membros da equacgéo (99), obtém-
se:

L{%} =L {%6'& — a)}

s (s) —s3y (0) —s?2y'(0) —sy"(0)—y"(0) = %Se‘“s (100)

Aplicando-se as condi¢des de contorno dadas em (96) na equacéo (100), tem-se:
My _
s*Y(s) —s2y'(0) —y""(0) = +75¢ as (101)

Fazendo: y'(0) = ¢; e y""'(0) = ¢,, aequagdo (101), fica:
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i € Mye ®
Y(s)= S+ 5 +—
(s) s2 s* EI s3

(102)

Aplicando-se a Transformada Inversa de Laplace em ambos os membros da equagéo
(102), obtém-se:

_ (€1 C2 My e_as}
1 _pr-1y1 2 Mo
LYY ()} = £ {SZ+ 242
X x3 M, (x —a)?
y(x) = ate §+ETu(x—a)
x3 M, (x —a)?
y(x) = cix+ ¢y 42 uu(x —a) (103)

6 EI 2
Para x > a = u(x —a) = 1, logo a equacéo (103) fica:

x® My (x —a)?
y(x) = clx+c2—+—ou

6 EI 2 (104)

A determinacdo dos valores das constantes ci1 e c» é realizada por meio da primeira e

segunda derivada da equagéo (104).

2

') = e +c, 4 Mo 105
y'(x)=c;+c, > El (x—a) ( )
17 MO
y(x)=0+c2x+ﬁ (106)

Aplicando-se as condi¢des de contorno da viga dadas em (97), tem-se:

i MO
Y'L)=0 = oL+ =0 (107)

2 M, (L—a)?
yL)=0 =2 l+c, —+———F"=

0 108
6 EI 2 (108)

Resolvendo-se o sistema de equacbes formado pelas equacdes (107) e (108), obtém-se
as constantes cl e c2:
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M, ) )
¢ =T [L2 — 3(L — a)?] (109)
M,
2= "L (110)

Substituindo-se os valores das constantes c1 e ¢z obtidos em (109) e (110) na equacao

(103), obtém-se a equacdo da linha elastica para viga:

My My

_ My 2 2 2
y(x) = m[L —3(L —a) ]x_6EILx3+ﬁ (x —a)*u(x —a)
y(x) = EIL {[L? = 3(L — a)?]x — x3 + 3L (x — a)*u(x — a)} (111)

Pode-se observar que os resultados encontrados na equacdo (111) ndo sdo exatamente
iguais, literalmente, aos encontrado nas equacdes (12) e (13), mas, se forem realizadas as
operacdes algébricas convenientes, resultaram em expressdes algébricas idénticas, exceto o
sinal. Essas “diferengas”, costumam acontecer as vezes, apenas devido &s caracteristicas

particulares de cada método.

Conclusoes

As transformadas de Laplace utilizadas na resolucdo de uma Equacdo Diferencial
Ordinaria, consiste em realizar uma mudangca de varidvel, por meio de uma integral impropria,
transformando-a em uma equacdo algébrica, que uma vez resolvida, é feita a reversdo do
processo, aplicando-se a transformada inversa de Laplace e posteriormente as condi¢des de
contorno, chegando-se assim, a solugdo do problema.

A utilizacdo de funcdes especiais, como a fungdo degrau unitéria, a fungdo rampa
unitaria, a funcdo impulso unitario e a funcdo unidade dupla, assim como as suas
respectivas transformadas de Laplace, permitem representar, os tipos de carregamentos
(carga uniformemente distribuida, carga linearmente distribuida, carga concentrada e carga

momento), normalmente utilizados no célculo de deslocamentos e esfor¢os em vigas.
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As Transformadas de Laplace podem ser aplicadas também no célculo de deslocamentos
em vigas hiperestaticas, ja que o grau de hiperestaticidade das vigas nao interferem na sua
resolucdo, ocorrera apenas um acrescimo das condi¢des de contorno igual ao numero de
constantes.

Foi demonstrado que a utilizacdo das transformadas de Laplace, sdo uma ferramenta
valiosa e a tornam uma alternativa acessivel para a resolucéo da linha elastica de uma viga, ja
gue os resultados sdo os mesmos que os obtidos por outros métodos, além de facilitar e
simplificar, de forma consideravel, os célculos matematicos envolvidos e a aplicacdo das

condigdes de contorno, que ficam restritas apenas aos tipos de vinculacdo da viga.
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